

AS-BUILT BASELINE MONITORING REPORT

Final

LONE HICKORY MITIGATION SITE

Yadkin County, NC DEQ Contract No. 6897 DMS Project No. 97135 USACE Action ID No. SAW-2017-00100 Yadkin River Basin HUC 03040101

Data Collection Period: January 2019 – April 2019

Submission Date: July 10, 2019

PREPARED FOR:

NC Department of Environmental Quality Division of Mitigation Services 217 West Jones Street; 3rd Floor Raleigh, NC 27603

July 10, 2019

Mr. Paul Wiesner Western Regional Supervisor NCDEQ – Division of Mitigation Services 5 Ravenscroft Dr., Suite 102 Asheville, NC 28801

RE: Final As-built Baseline Monitoring Document and Record Drawings for the Lone Hickory

Mitigation Site

Yadkin River Basin – CU# 03040101 – Yadkin County

DMS Project ID No. 97135

Contract # 006897

Dear Mr. Wiesner:

Wildlands Engineering, Inc. (Wildlands) has reviewed the Division of Mitigation Services (DMS) comments from the Draft As-built Baseline Monitoring report for the Lone Hickory Mitigation Site. The report has been updated to reflect those comments. The Final As-built Baseline Monitoring Document and Record Drawings are included. Wildlands' responses to DMS' report comments are noted below in *italics*.

DMS comment; Cover page: Please include the DEQ – DMS Raleigh address on the cover page.

NCDEQ – Division of Mitigation Services

217 West Jones Street; 3rd Floor

Raleigh, NC 27603

Wildlands response; The DEQ – DMS Raleigh address has been included on the cover page of the report.

DMS comment; Section 3 – Monitoring Plan and Methodology: Please briefly discuss any updated locations of monitoring devices/plot locations from the IRT approved mitigation plan.

Wildlands response; Text has been added in Sections 3.0, 3.1.1, 3.2, and 3.3 to clarify any updated locations of monitoring devices/plot locations from the Mitigation Plan.

DMS comment; Table 2: Please add "Activity or Report", "Data Collection Complete" and "Completion or Delivery" titles to the table columns.

Wildlands response; In Table 2, the appropriate titles have been added to the table columns.

DMS comment; Electronic Support Files: Please provide the Turner as-built .dwg file with the final electronic submittal.

Wildlands response; The Turner as-built .dwg file has been provided with the final electronic support files.

DMS comment; Electronic Support Files: Please provide the WEI design .dwg file with the final electronic submittal.

Wildlands response; The WEI design .dwg file has been provided with the final electronic support files.

DMS comment; Electronic Support Files: Please confirm that all CCPV GIS shapefiles have been included in the final electronic submittal.

Wildlands response; All CCPV GIS shapefiles have been included in the final electronic support files.

DMS comment; Electronic Support Files: Please include the FEMA Floodplain Compliance permit (#2017-4) and any supporting documentation in the final electronic submittal.

Wildlands response; The FEMA Floodplain Compliance permit (#2017-4) and supporting documentation have been included in the final electronic support files.

Two (2) hard copies of the Final Monitoring Report and a full electronic submittal has been mailed to the DMS western field office. Please contact me at 704-332-7754 x110 if you have any questions.

Sincerely,

Emily Reinicker, PE, CFM

Project Manager

PREPARED BY:

Wildlands Engineering, Inc. 1430 South Mint Street, Suite 104 Charlotte, NC 28203

> Phone: 704.332.7754 Fax: 704.332.3306

EXECUTIVE SUMMARY

Wildlands Engineering, Inc. (Wildlands) implemented a full-delivery stream and wetland mitigation project at the Lone Hickory Mitigation Site (Site) for the North Carolina Department of Environmental Quality (DEQ) Division of Mitigation Services (DMS). The project restored and preserved a total of 12,630 linear feet (LF) of perennial and intermittent stream and restored 9.5 acres of riparian wetland in Yadkin County, NC. The Site is located within the DMS targeted watershed for the Yadkin River Basin HUC 03040101130020 and the NC Division of Water Resources (NCDWR) Subbasin 03-07-02. The project is providing 13,164 stream mitigation units (SMUs) and 9.5 wetland mitigation units (WMUs) for the Yadkin River Basin Hydrologic Unit Code (HUC) 03040101 (Yadkin 01).

The watershed has a long history of agricultural activity and most of the stressors to stream functions are related to this historic and current land use practices. The major stream stressors for the Site were concentrated agricultural runoff inputs, active stream incision and head cutting, lack of stabilizing streamside vegetation, extensive agricultural manipulation through ditching, and the lack of bedform diversity. The effects of these stressors resulted in degraded water quality and habitat throughout the Site's watershed when compared to reference conditions. The project approach for the Site focused on evaluating the Site's existing functional condition and evaluating its potential for recovery and need for intervention.

The project goals defined in the mitigation plan (Wildlands, 2017) were established with careful consideration of 2009 Upper Yadkin Pee Dee River Basin Restoration Priorities (RBRP) goals and objectives to address stressors identified in the watershed. The established project goals include:

- Improve stream channel stability;
- Reconnect channels with historic floodplains and re-establish wetland hydrology and function in relic wetland areas;
- Improve instream habitat;
- Reduce sediment and nutrient input from adjacent farm fields;
- Restore and enhance native floodplain and wetland vegetation; and
- Permanently protect the project site from harmful uses.

The Site construction and as-built surveys were completed between October 2018 and April 2019. Planting and baseline vegetation data collection occurred between February and April 2019. Minimal adjustments were made during construction and specific changes are detailed in Section 5.1. Baseline (MYO) profiles and cross-section dimensions closely match the design parameters with little variation. The Site has been built as designed and is expected to meet the upcoming monitoring year's success criteria.

i

LONE HICKORY MITIGATION SITE

As-Built Baseline Monitoring Report

	CONTENTS PROJECT GOALS, BACKGROUND, AND ATTRIBUTES1-	-1
1.2	Project Location and Setting1- Project Goals and Objectives1- Project Structure, Restoration Type and Approach1-	-1
1.3.1 1.3.2	,	
1.4	Project History, Contacts and Attribute Data1	-4
Section 2:	PERFORMANCE STANDARDS2-	.1
2.1	Streams2-	·1
2.1.1 2.1.2 2.1.3 2.1.4	Pattern and Profile2- Substrate2-	-1 -1
2.1.5		
2.3 2.4	Vegetation	-2 -2
Section 3:	MONITORING PLAN & METHODOLOGY3-	·1
3.1	Streams3-	·1
3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6	Pattern and Profile	-1 -1 -2 -2
	Vegetation	
	Wetlands3-	
	ADAPTIVE MANAGEMENT AND CONTINGENCY PLAN4	
	Adaptive Management Plan4-	
	AS-BUILT CONDITION (BASELINE)	
5.1	Record Drawings5-	
5.1.1 5.1.2 5.1.3	UT2A5- BMPs5-	-1 -1
5.1.4 5.2	Vegetation Planting Plan5- Baseline Data Assessment5-	

5.2.1	Morphological State of the Channel	5-2
5.2.2	Vegetation	5-2
	Wetlands	
Section 6:	REFERENCES	6-1

APPENDICES

Appendix 1 General Figures and Tables

Figure 1 Project Vicinity Map

Figure 2 Project Component/Asset Map

Figure 3.0 – 3.5 Monitoring Plan View

Table 1 Mitigation Assets and Components
Table 2 Project Activity and Reporting History

Table 3 Project Contacts Table

Table 4 Project Information and Attributes
Table 5a – 5b Monitoring Component Summary

Appendix 2 Morphological Summary Data and Plots

Table 6a – 6c Baseline Stream Data Summary
Table 7 Reference Reach Data Summary

Table 8a – 8b Morphology and Hydraulic Summary (Dimensional Parameters-Cross-Section)

Longitudinal Profile Plots

Cross-Section Plots

Reachwide and Cross-Section Pebble Count Plots

Stream Photographs

Appendix 3 Vegetation Plot Data

Table 9a – 9c Planted and Total Stem Counts

Vegetation Photographs

Appendix 4 Record Drawings

LIST OF ACRONYMS

Best Management Practice (BMP)

Current Condition Plan View (CCPV)

Department of Environmental Quality (DEQ)

Division of Mitigation Services (DMS)

Hydrologic Unit Code (HUC)

Interagency Review Team (IRT)

Monitoring Year (MY)

North Carolina Division of Water Resources (NCDWR)

Stream Mitigation Unit (SMU)

Step Pool Stormwater Conveyance (SPSC)

Targeted Local Watershed (TLW)

United States Army Corps of Engineers (USACE)

Unnamed Tributary (UT)

Wetland Mitigation Unit (WMU)

Yadkin Pee Dee River Basin Priorities (RBRP)

Section 1: PROJECT GOALS, BACKGROUND, AND ATTRIBUTES

1.1 Project Location and Setting

The Lone Hickory Mitigation Site (Site) is located in Yadkin County approximately 3.5 miles south of the town of Yadkinville, NC in the Yadkin River Basin HUC 03040101130020 and NCDWR Subbasin 03-07-02 (Figure 1). Located in the Inner Piedmont lithotectonic belt within the Piedmont physiographic province (NCGS, 1985), the project watershed is dominated by agricultural and forested land.

The Site contains two valleys, separated by a ridge that runs north to south through the project limits. South Deep Creek flows along the northern boundary of the project. On the east side of the ridge (herein referenced as the East Side), UT1 flows through a steep, narrow valley that gradually widens and flattens in slope as it flows downstream to the South Deep Creek floodplain. UT1 is joined by UT1A and UT1B within the Site limits before flowing offsite to join South Deep Creek. On the west side of the ridge (herein referenced as the West Side), UT2 and UT3 flow out of steep, narrow valleys into the broad, flat floodplain of South Deep Creek. UT2A and UT2B join UT2 before the stream's confluence with South Deep Creek. The East Side of the Site drains 0.44 square miles and the West Side of the Site drains 0.87 square miles of rural land.

Prior to construction activities, the Site has a history of use for both crop production and as a dairy farm resulting in degraded in-stream habitat and sediment erosion. Within the East Side of the Site, the streams were manipulated through ditching, impoundments, and land use changes. The West Side streams were ditched and re-routed with the adjacent floodplain previously altered for agricultural uses. The riparian buffers on both sides exhibited a lack of stabilizing streamside vegetation due to agricultural practices.

Pre-construction conditions are outlined in Table 4 of Appendix 1 and Table 6 of Appendix 2.

1.2 Project Goals and Objectives

The Site is providing numerous ecological benefits within the Yadkin Valley Basin. The project goals were established with careful consideration to address stressors that were identified in the NCDWR 2008 Yadkin River Basinwide Plan (NCDWR, 2008) and the RBRP (EEP, 2009). Improvements to water quality and ecological processes are outlined below as project goals and objectives.

Goals	Objectives
Improve stream channel stability.	Restore stream channels that will maintain a stable pattern and profile considering the hydrologic and sediment inputs to the system, the landscape setting, and the watershed conditions. Create stable tie-ins for tributaries joining restored channels. Add bank revetments and in-stream structures to protect restored streams.
Reconnect channels with historic floodplains and re-establish wetland hydrology and function in relic wetland areas.	Remove man-made impoundments, remove culvert crossings, and restore historic valley profile. Remove historic overburden from farm fields. Reconstruct stream channels with bankfull dimensions relative to the floodplain. Restore stream plan form to promote development of mutually beneficial stream/wetland complex.
Improve instream habitat.	Remove man-made impoundments and culvert crossings within easement. Install habitat features such as constructed riffles, cover logs, and brush toes into restored/enhanced streams. Add woody materials to channel beds. Construct pools of varying depth.
Reduce sediment and nutrient input from adjacent farm fields.	Construct two step pool stormwater conveyance and three dry detention BMPs to slow and treat runoff from farm fields before entering Site streams.
Restore and enhance native floodplain and wetland vegetation.	Plant native tree and understory species in riparian zone where currently insufficient.
Permanently protect the project site from harmful uses.	Establish a conservation easement on the Site.

1.3 Project Structure, Restoration Type and Approach

The final mitigation plan was submitted and accepted by DMS in October of 2017 and the IRT in December of 2017. Construction activities were completed in April 2019 by KBS Earthworks, Inc. Turner Land Surveying, PLLC. completed the as-built survey in April 2019. Planting was completed following construction in the spring of 2019 by Bruton Natural Systems, Inc. Field adjustments made during construction are described in further detail in section 5.1 and depicted in the Record Drawings in Appendix 4. Please refer to Appendix 1 for detailed project activity, history, contact information, and watershed/site background information.

1.3.1 Project Structure

Project mitigation components are outlined in the Project Components and Mitigation Credits Table (Table 1) and depicted in the Current Conditions Plan View Maps (Figures 3.0-3.5) that are located in Appendix 1.

1.3.2 Restoration Type and Approach

The design approach for this Site was chosen based on the surrounding landscape, climate, natural vegetation communities but also with thorough consideration to existing watershed conditions and trajectory. The project includes stream restoration and preservation, as well as wetland restoration. The specific proposed stream and wetland mitigation types are illustrated in Figure 2 and detailed below. The Site vegetative planting plan is depicted on sheet 3.0 through 3.10 of the record drawings located in Appendix 4.

East Side

At the beginning of UT1, upstream of the jurisdictional stream call, BMP1 was installed to treat concentrated agricultural runoff and was constructed as a Step Pool Conveyance System (SPSC). At the downstream extend of BMP1, UT1 becomes intermittent and the channel was reconnected to the valley bottom using Priority 1 restoration. As UT1 transitions to a perennial channel, its valley slope is over 6%; therefore, it was designed as a Ba-type stream with energy dissipating vertical steps. This approach continued throughout Reach 1. BMP2 was installed in the left floodplain of Reach 1 to capture and treat concentrated agricultural runoff. BMP2 discharges into Reach 1 near station 103+00 via a stabilized outlet channel.

UT1 Reach 2A begins at station 111+05 where the valley slope flattens to 3.1% and the design transitions to a Rosgen B-type stream. The stream was re-aligned to the center of the valley, and rock steps and long constructed riffles were used to dissipate energy. Reach 2A continues downslope to the confluence of UT1A at station 128+51 where Reach 2B begins. Here, the valley slope flattens to 2.3%, and the design transitions to a meandering Rosgen C-type stream.

UT1 Reach 3 begins at station 142+19 slightly downstream of where UT1B enters from the right floodplain. Reach 3 continues downstream as a Rosgen C-type stream with slightly larger dimensions to accommodate the increased watershed size. To treat the agricultural runoff and ditch erosion, a SPSC BMP (BMP3) was installed within an ephemeral ditch that enters Reach 3 from the right floodplain. Reach 4 starts at station 158+60 where the design approach changes to preservation with some minor enhancement features, such as bank stabilization and the addition of a few habitat structures. The two project tributaries to UT1 (UT1A and UT1B) were extended to tie into the new UT1 alignment and credited as preservation streams.

Native riparian vegetation was planted along UT1 and its tributaries in non-forested areas within the conservation easement. Open areas were planted at density of 605 stems. Disturbed areas outside of the easement were re-established with permanent grass.

West Side

The focus on this side of the Site was to holistically restore the bottom land by removing drainage ditches and overburden material and restoring the streams and wetlands to their natural position within the South Deep Creek floodplain. To accomplish these goals, a ditch that ran along the property boundary was filled up to the wetland area and UT3's hydrology was restored using Priority 1 restoration. UT3 flows northeasterly through the broad floodplain to connect with UT2A and UT2 before discharging into Deep South Creek. The downstream extent of UT3 Reach 3 was designed using a Priority 2 approach with a floodplain bench as it drops to meet the invert of South Deep Creek; however, the step height was limited to no more than 0.5 feet to allow aquatic species from South Deep Creek to navigate upstream into the newly restored design reaches.

UT2A was restored as a Rosgen C-type stream using Priority 1 restoration and flows northwesterly to connect with UT3 at station 309+82. A series of farm ditches that previously diverted UT2B's drainage

area from the channel were filled, and UT2B was restored as a Rosgen Cb-type stream within the center of its valley using Priority 1 restoration. UT2B flows westerly to join UT2 at station 215+19. A dry detention basin BMP (BMP4) was installed upstream of UT2B's inception point to treat agricultural drainage.

Native riparian vegetation was planted throughout the open floodplain areas of UT2A, UT2B, UT2, and UT3 to the extent of the conservation easement. Open areas were planted at density of 605 stems per acre. Disturbed areas outside of the easement were re-established with permanent grass.

The West Side of the Site includes the re-establishment of the stream wetland complex through the floodplain bottom to South Deep Creek. To improve wetland hydrology, grading was performed within the wetland zone to remove overburden, bring hydric soils within the top 12 inches of the soil, and restore the natural topography of the floodplain. Additionally, the wetland areas were disked and planted with native wetland plants.

1.4 Project History, Contacts and Attribute Data

The Site was restored by Wildlands through a Full Delivery contract with DMS. Tables 2, 3, and 4 in Appendix 1 provide detailed information regarding the project activity and reporting history, project contacts, and project baseline information and attributes.

Section 2: PERFORMANCE STANDARDS

The stream and wetland performance criteria for the Site follow approved performance criteria presented in the Lone Hickory Mitigation Site Mitigation Plan (2017) and is based on performance criteria presented in the DMS Mitigation Plan Template (October 2015), the Annual Monitoring and Closeout Reporting Template (April 2015), and the Stream and Wetland Mitigation Guidance issued in October 2016 by the USACE. Annual monitoring and semi-annual site visits will be conducted to assess the condition of the finished project. Specific performance standard components are proposed for stream morphology, hydrology, vegetation, and wetland hydrology. Performance criteria will be evaluated throughout the seven-year post-construction monitoring period. The monitoring program designed to verify that performance standards are met is described in Section 3.

2.1 Streams

2.1.1 Dimension

Riffle cross-sections on the restoration reaches should be stable and should show little change in bankfull area, maximum depth ratio, and width-to-depth ratio. All riffle cross-sections should fall within the parameters defined for the designated stream type. If any changes do occur, these changes will be evaluated to assess whether the stream channel is showing signs of instability. Indicators of instability include a vertically incising thalweg or eroding channel banks. Remedial action would not be taken if channel changes indicate a movement toward stability. Please note that the downstream extent of UT3 Reach 3 was designed to deepen relative to its floodplain as it transitions to meet the invert of South Deep Creek and this reach is expected to have a bank height ratio greater than 1.0 and an entrenchment ratio less than 2.2.

2.1.2 Pattern and Profile

A longitudinal profile was conducted as part of the as-built survey to provide a baseline for comparison should it become necessary to perform longitudinal profile surveys later during monitoring and to insure accordance with design plans. Annual longitudinal profile surveys are not required during the seven-year monitoring period unless other indicators during the annual monitoring indicate a trend toward vertical and lateral instability. If a longitudinal profile is deemed necessary, monitoring will follow standards as described in the 2016 USACE Stream and Wetland Mitigation Guidance for the necessary reaches.

Restoration reaches must remain vertically stable throughout the monitoring period with little indication of downcutting or significant aggradation. Deposition of sediments at certain locations (such as the inside of meander bends) is expected and acceptable. Changes in pool depth are not an indication of vertical instability. Restoration reaches must remain laterally stable and major changes planform pattern dimensions and sinuosity should not occur. However, migration of meanders on alluvial channels is not an indication of instability if cross sectional dimensions continue to meet the requirements.

2.1.3 Substrate

A pebble count was conducted at each surveyed riffle to characterize the pavement during the baseline monitoring only. A reach-wide pebble count will be performed in each restoration reach for monitoring years 1, 2, 3, 5 and 7. Reach-wide counts will be conducted for classification purposes. Restoration reaches should show maintenance of coarser materials in the riffle features and finer particles in the pool features. Riffles may fine over the course of monitoring due to the stabilization of contributing watershed sediment sources.

2.1.4 Photo Documentation

Photographs should illustrate the Site's vegetation and morphological stability on an annual basis. Cross-section photos should demonstrate no excessive erosion or degradation of the banks. Longitudinal photos should indicate the absence of persistent of mid-channel bars or vertical incision. Grade control structures should remain stable. Deposition of sediment on the bank side of vane arms is preferable. Maintenance of scour pools on the channel side of vane arms is expected.

2.1.5 Hydrology Documentation

The occurrence of bankfull events will be documented throughout the monitoring period. Four bankfull flow events must be documented within the seven-year monitoring period. The four bankfull events must occur in separate years. In addition, restored intermittent channels (UT1 Reach 1, UT2A, and UT2B) will each have a stream gage pressure transducer installed midreach to document 30 consecutive days of flow.

2.2 Vegetation

The final vegetative performance standard will be the survival of 210 planted stems per acre in the planted riparian areas at the end of the required seven-year monitoring period. The interim measure of vegetative success for the Site will be the survival of at least 320 planted stems per acre at the end of MY3 and at least 260 stems per acre at the end of MY5. The extent of invasive species coverage will also be monitored and controlled as necessary throughout the required monitoring period.

2.3 Wetlands

The final performance standard for wetland hydrology will be a free groundwater surface within 12 inches of the ground surface for 19 consecutive days (9.2 percent) of the defined growing season for Yadkin County (April 4 through October 27) under typical precipitation conditions. This performance standard was determined through model simulations of post restoration conditions and comparison to reference wetland systems. If a gage does not meet the performance standard for a given monitoring year, rainfall patterns will be analyzed, and the hydrograph will be compared to that of the reference wetlands to assess whether atypical weather conditions occurred during the monitoring period. In addition, on-site soil temperatures corroborated with vegetative indicators, including bud burst and leaf drop, may be used as documentation to extend the growing season.

2.4 Visual Assessments

Visual assessments should support the specific performance standards for each metric as described above.

2.5 Schedule and Reporting

Monitoring reports will be prepared in the fall of each year of monitoring and submitted to DMS. Based on the DMS Annual Monitoring Template (April 2015), the monitoring reports will include the following:

- Project background which includes project objectives, project structure, restoration type and approach, location and setting, history and background;
- Project Asset Map of major project elements;
- Photographs showing views of the restored Site taken from fixed point stations;
- Current Condition Plan View Map with monitoring features and current problem areas noted such
 as stability and easement encroachment based on the cross-section surveys and annual visual
 assessments;
- Assessment of the stability of the stream based on the cross-sections;

- Vegetative data as described above including the identification of any invasion by undesirable plant species;
- Groundwater gage plots;
- A description of damage by animals or vandalism;
- Maintenance issues and recommended remediation measures will be detailed and documented; and
- Wildlife observations.

Section 3: MONITORING PLAN & METHODOLOGY

Annual monitoring will consist of collecting morphologic, vegetative, and hydrologic data to assess the project success based on the restoration goals, as outlined in the Lone Hickory Mitigation Site Mitigation Plan (2017). Monitoring requirements will follow guidelines outlined in the DMS Annual Monitoring and Closeout Reporting Template (April 2015) and the USACE Stream and Wetland Mitigation Guidance (October 2016). Installed monitoring device and plot locations closely mimic the locations of those proposed in the Site's Mitigation Plan. Deviations from these locations were made when professional judgement deemed them necessary to better represent as-built field conditions or when installation of the device in the proposed location was not physically feasible. Project success will be assessed by measuring channel dimension, substrate composition, vegetation, surface water hydrology, groundwater hydrology and by analyzing photographs and performing visual assessments. Any high priority problem areas identified, such as unstable stream banks, bed instability, aggradation/degradation, or poor vegetation establishment will be evaluated on a case-by-case basis. The problem areas will be visually noted and reported to DMS staff in the annual report. Refer to Table 5 in Appendix 1 for the monitoring component summary.

3.1 Streams

Geomorphic assessments follow guidelines outlined in the Stream Channel Reference Sites: An Illustrated Guide to Field Techniques (Harrelson et al., 1994), methodologies utilized in the Rosgen stream assessment and classification documents (Rosgen, 1994 and 1996), and in the Stream Restoration: A Natural Channel Design Handbook (Doll et al., 2003). Please refer to Figures 3.0 through 3.5 in Appendix 1 for monitoring locations discussed below.

3.1.1 Dimension

To assess channel dimension performance, 32 permanent cross-sections were installed along stream restoration reaches to represent approximately 50% riffles and 50% pools and as defined in Table 23 and Table 24 of the Mitigation Plan. Cross-section locations were chosen in the field to be representative of the typical dimensions for each project reach. Each cross-section is permanently marked with rebar installed in concrete and ½ inch PVC pipes. Cross-section surveys will include points measured at all breaks in slope, including top of bank, bankfull, edge of water, and thalweg. Cross-section surveys will be conducted in monitoring years one, two, three, five, and seven. Photographs will be taken of the cross-sections looking upstream and downstream during the survey assessment.

3.1.2 Pattern and Profile

Longitudinal profile surveys will not be conducted during the seven-year post-construction monitoring period unless other indicators during the annual monitoring indicate a trend toward vertical and lateral instability. If a longitudinal profile is deemed necessary, monitoring will follow standards as described in the DMS Annual Monitoring and Closeout Reporting Template (April 2015), and the Stream Mitigation Guidelines issued in October 2016 by the USACE for the necessary reaches. Stream pattern and profile will be assessed visually as described below in Section 3.1.6.

3.1.3 Substrate

Reach-wide pebble count will be performed in each restoration reach for classification purposes and will be conducted in monitoring years one, two, three, five, and seven. Riffle 100-count substrate sampling will be collected during the baseline monitoring only to characterize pavement at as-built.

3.1.4 Photo Reference Points

A total of 44 permanent photograph reference points were established along the stream reaches after construction. Photographs will be taken once a year to visually document stability for the seven-year monitoring period. Permanent markers were established and located with GPS equipment so that the same locations and view directions on the site are photographed each year. Photos will be used to monitor all restoration and preservation stream reaches.

Longitudinal reference photos were established approximately every 300-500 LF along the channel by taking a photo looking upstream and downstream. Cross-sectional photos will be taken of each permanent cross-section looking upstream and downstream.

3.1.5 Hydrology Documentation

The occurrence of bankfull events will be documented throughout the seven-year monitoring period using pressure transducers, photographs, and visual assessments such as debris lines. Streamflow stage will be monitored using a continuous stage recorder (pressure transducer). A total of 6 stream gages were installed along restoration reaches. The stream gage pressure transducers installed on UT1 Reach 1, UT2A, and UT2B are to document 30 days of continuous flow. The stream gages will be downloaded semi-annually to determine if a bankfull event has occurred. Photographs will be used to document the occurrence of debris lines and sediment deposition observed during field visits. The transducer data will be plotted and included in the annual monitoring reports.

3.1.6 Visual Assessment

Visual assessments will be performed along stream reaches on a semi-annual basis during the seven-year monitoring period. Areas of concern, such as channel instability (i.e. lateral and/or vertical instability, in-stream structure failure/instability and/or piping, headcuts), vegetation health (i.e. low stem density, mortality, invasive species, and/or encroachment), beaver activity, or livestock trespass; will be mapped, photographed, and described in the annual monitoring reports. Problem areas will be re-evaluated during each subsequent visual assessment. Should remedial actions be required, recommendations will be provided in the annual monitoring report.

3.2 Vegetation

Vegetative plot monitoring will be conducted in post-construction monitoring years 1, 2, 3, 5, and 7. Permanent plots will be monitored in accordance with the guidelines and procedures developed by the Carolina Vegetation Survey-EEP Level 2 Protocol (Lee et al., 2006) and the 2016 USACE Stream and Wetland Mitigation Guidance to assess the vegetation success. For both permanent and random plots, all woody stems, including exotic and invasive species, should be counted. Supplemental plantings and volunteer plants must be present for at least two growing seasons before counting toward performance standards for monitoring years five and seven. Exotic/invasive species will not count toward success of performance standards.

A total of 25 permanent vegetation plots were established within the project easement area. Permanent vegetation plots were randomly established within the planted stream riparian buffer areas to capture the heterogeneity of the designed vegetative communities. The locations of permanent vegetation plots were chosen in the field using the same distribution throughout the planting areas, as shown in the Site's Mitigation Plan, and to best represent the planted areas within the easement. All of the plots were established as either a standard 10 meter by 10 meter square plot or a 5 meter by 20 meter plot. The vegetation plot corners have been marked and are recoverable either through field identification or with the use of a GPS unit. Reference photographs at the origin looking diagonally across the plot to the opposite corner were taken during the MY0 in April 2019. Subsequent assessments in monitoring years

one, two, three, five, and seven following baseline survey will capture the same reference photograph locations.

Individual permanent plot data will be provided and will include diameter, height, density, vigor, damage (if any), and percent survival. Planted woody stems will be marked during assessment as needed based on a known origin so they can be found in succeeding monitoring years. Mortality will be determined from the difference between the baseline year's living planted stems and the current year's living planted stems.

In addition, 15 mobile vegetation plots will be established in different locations throughout the planted conservation easement to evaluate the random vegetation performance for the Site. Mobile vegetation monitoring plot assessments will document stems, species, and height using a circular or 100 m² square/rectangular plot.

Please refer to Figures 3.0 through 3.5 in Appendix 1 for the permanent vegetation monitoring locations.

3.3 Wetlands

To monitor the wetland re-establishment area, nine groundwater monitoring gages were installed in March of 2019 per USACE recommended procedures within the wetland areas using In-situ Level TROLL® 100 pressure transducers. The locations of the installed gages closely mimic those of the Site's Mitigation Plan. Minor adjustments in these locations were made to best represent wetland topography or when installation of a gage met ground refusal. An additional gage was established in a nearby reference wetland and will be utilized to compare the hydrologic response within the restored wetland areas at the Site. The gages are set to record the groundwater level two times per day. The groundwater gages will be downloaded quarterly during site visits. The locations of the groundwater gages are denoted in Figures 3.0 through 3.5.

Section 4: ADAPTIVE MANAGEMENT AND CONTINGENCY PLAN

4.1 Adaptive Management Plan

Wildlands will perform maintenance as needed on the mitigation project. A physical inspection of the Site shall be conducted a minimum of once per year throughout the post-construction monitoring period or until performance standards are met. These site inspections may identify site components and features that require routine maintenance. Routine maintenance for stream features should be expected most often in the first two years following site construction. The need for maintenance will be evaluated annually during monitoring activities. Maintenance activities may include the following.

Component/	Maintenance through project close-out
Feature	ameenanee ameagn project door out
Stream	Routine channel maintenance and repair activities may include chinking of in-stream structures to prevent piping, securing of loose coir matting, and supplemental installations of live stakes and other target vegetation along the channel – these shall be conducted where success criteria are threatened or at the discretion of the Designer. Areas where storm water and floodplain flows intercept the channel may also require maintenance to prevent bank failures and head-cutting. Beaver activity will be monitored and beaver dams on project streams will typically be removed, at the discretion of the Designer, during the monitoring period to allow for bank stabilization and stream development outside of this type of influence.
Wetlands	Routine wetland maintenance and repair activities may include supplemental installations of target vegetation within the wetland. Areas where storm water and floodplain flows intercept the wetland may also require maintenance to prevent scour that adversely and persistently threatens wetland habitat or function.
Vegetation	Vegetation shall be maintained to ensure the health and vigor of the targeted community. Routine vegetation maintenance and repair activities may include supplemental planting, pruning, mulching, and fertilizing. Exotic invasive plant species requiring treatment per the Invasive Species Treatment Plan (Appendix 9) shall be treated in accordance with that plan and with NC Department of Agriculture (NCDA) rules and regulations.
Site Boundary	Site boundaries shall be identified in the field to ensure clear distinction between the mitigation site and adjacent properties. Boundaries may be identified by fence, marker, bollard, post, tree-blazing, or other means as allowed by site conditions and/or conservation easement. Boundary markers disturbed, damaged, or destroyed will be repaired and/or replaced on an as-needed basis.

The Wildlands Team will develop necessary adaptive measures or implement appropriate remedial actions in the event that the Site or a specific component of the Site fails to achieve the success criteria outlined above. The project-specific monitoring plan developed during the design phase identifies an appropriate threshold for maintenance intervention based on the monitored items. Any actions implemented will be designed to achieve the success criteria specified previously and will include a work schedule and updated monitoring criteria.

Section 5: AS-BUILT CONDITION (BASELINE)

The Site construction and as-built surveys were completed in April 2019. The survey included developing an as-built topographic surface, locating the channel boundaries, structures, and cross-sections. For comparison purposes, during the baseline assessments, reaches were divided into assessment reaches in the same way that they were established for design parameters: UT1 Reach 1, UT1 Reach 2A, UT1 Reach 2B, UT1 Reach 3, UT1 Reach 4, UT1A, UT1B, UT2 Reach 1, UT2 Reach 2, UT2A, UT2B, UT3 Reach 1, UT3 Reach 2, and UT3 Reach 3.

5.1 Record Drawings

A sealed half-size record drawing is located in Appendix 4 that includes redlines for any significant field adjustments made during construction that were different from the design plans. Specific changes by each project area are detailed below:

5.1.1 UT1

- Station 108+10 110+00: Valley grading was revised to reduce wetland impacts;
- Station 110+80 113+10: Alignment revised from the 230 LF in original design to 239 LF constructed in the field to save trees;
- Station 160+00: Brush toe was not installed due to field conditions;
- Station 160+00 160+70: Riffle material was added due to field conditions;
- Station 161+05 161+28: Boulder toe was added due to field conditions;
- Station 161+28: Boulder sill was not installed due to field conditions;
- Station 161+70 161+85: Brush toe was added due to field conditions; and
- Station 162+37 162+60: Brush toe was added due to field conditions.

5.1.2 UT2A

- Station 400+50 400+65: Brush toe was not installed due to field conditions;
- Station 400+86 400+96: Brush toe was not installed due to field conditions; and
- Station 401+11 401+22: Brush toe was not installed due to field conditions.

5.1.3 BMPs

- BMP2: Rock was added to the outlet for stability;
- BMP3: A detention basin with rock inlets and outlets was added; and
- BMP4: 4 Boulder sills were added to the overflow channel for stability.

5.1.4 Vegetation Planting Plan

- Alnus serrulata (tag alder) was not planted in the open area buffer planting zone.
- Shaded planting areas shown on the mitigation planting plan were evaluated based on the field conditions. Areas that warranted additional stems were supplemented with bare root plantings. Approximately 2 acres of the site required supplemental bare root plantings.

• Quercus pagoda (cherrybark oak) and Quercus Iyrata (overcup oak) were planted in addition to Quercus michauxii (swamp chestnut oak) as alternatives in the open buffer planting areas. Quercus pagoda (cherrybark oak) was planted instead of Quercus michauxii (swamp chestnut oak) in the wetland planting area.

5.2 Baseline Data Assessment

MYO was conducted between February and April 2019 with the vegetation data collection occurring between March and April 2019, immediately following planting. The first annual monitoring assessment (MY1) will be completed in the fall of 2019. The streams will be monitored for a total of seven years, with the final monitoring activities scheduled for 2025.

5.2.1 Morphological State of the Channel

As-built morphological data was collected between February 2019 and April 2019. Please refer to Appendix 2 for summary data tables, morphological plots, and stream photographs.

Profile

The MYO profiles generally match the profile design parameters. On the design profiles, riffles were depicted as straight lines with consistent slopes. Variations from the design profile reflect field changes during construction as a result of field conditions. Additionally, as-built maximum bankfull depths slightly exceed design parameters for UT1 Reach 1, UT1 Reach 2A, and UT2. Variations in channel profile do not constitute a problem or indicate a need for remedial actions and will be assessed visually during the CCPV Site walks.

Dimension

The MYO dimension numbers closely match the design parameters with minor variations. Over time as vegetation is established, the channels may narrow. This narrowing over time would not be seen as an indicator of instability in and of itself.

<u>Pattern</u>

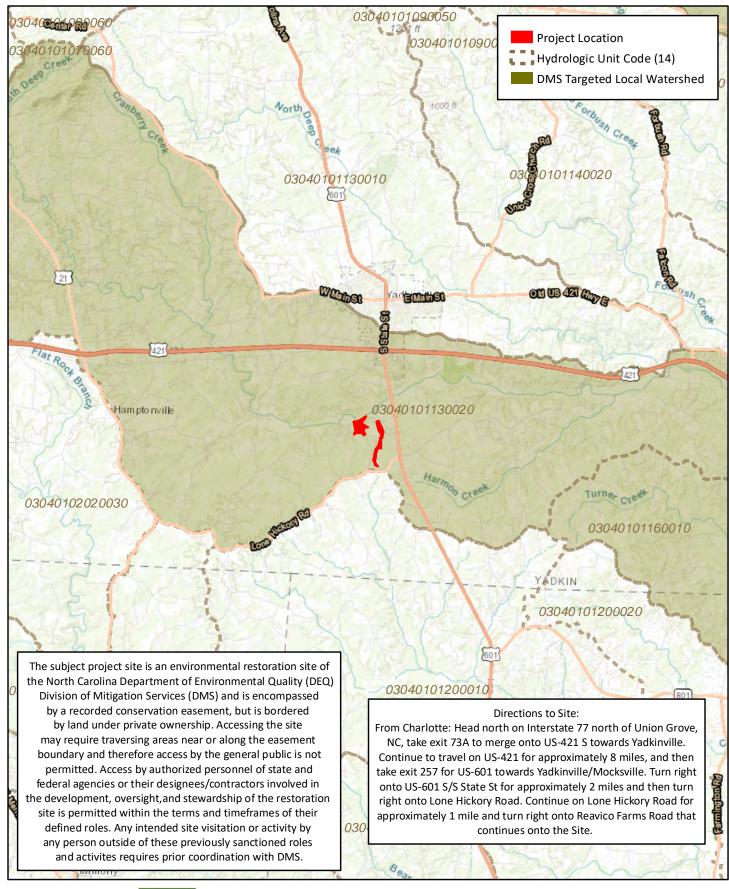
The MYO pattern metrics fell within acceptable ranges of the design parameters.

Bankfull Events

Bankfull events recorded following completion of construction will be reported in the Year 1 monitoring report.

5.2.2 Vegetation

The overall MY0 planted density is 597 stems/acre, which exceeds the interim measure of vegetative success of at least 320 planted stems per acre at the end of the third monitoring year. Summary data and photographs of each plot can be found in Appendix 3.


5.2.3 Wetlands

Groundwater gage data will be reported in the annual MY1 report.

Section 6: REFERENCES

- Doll, B.A., Grabow, G.L., Hall, K.A., Halley, J., Harman, W.A., Jennings, G.D., and Wise, D.E. 2003. Stream Restoration A Natural Channel Design Handbook.
- Ecosystem Enhancement Program (EEP), February 2009. Upper Yadkin Pee-Dee River Basin Restoration Priorities.
- Harrelson, Cheryl C; Rawlins, C.L.; Potyondy, John P. 1994. *Stream Channel Reference Sites: An Illustrated Guide to Field Technique*. Gen. Tech. Rep. RM-245. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 61 p.
- Lee, Michael T., Peet, Robert K., Steven D., Wentworth, Thomas R. 2006. CVS-EEP Protocol for Recording Vegetation Version 4.0. Retrieved from
 - http://www.nceep.net/business/monitoring/veg/datasheets.htm
- North Carolina Division of Water Resources (NCDWR), 2015. Surface Water Classifications. http://portal.ncdenr.org/web/wq/ps/csu/classifications
- North Carolina Division of Mitigation Services (DMS), April 2015. DMS Annual Monitoring and Closeout Reporting Template.
- North Carolina Division of Mitigation Services (DMS), October 2015. DMS Stream and Wetland Mitigation Plan Template and Guidance.
- North Carolina Geological Survey (NCGS), 1985. Geologic Map of North Carolina: North Carolina Survey, General Geologic Map, scale 1:500,000. https://deq.nc.gov/about/divisions/energy-mineral-land-resources/north-carolina-geological-survey/ncgs-maps/1985-geologic-map-of-nc4
- Rosgen, D. L. 1994. A classification of natural rivers. Catena 22:169-199.
- Rosgen, D.L. 1996. Applied River Morphology. Pagosa Springs, CO: Wildland Hydrology Books.
- United States Army Corps of Engineers (USACE), October 2016. Stream Mitigation Guidelines. USACE, NCDENR-DWQ, USEPA, NCWRC.
- Wildlands Engineering, Inc (Wildlands), 2017. Lone Hickory Mitigation Site Mitigation Plan. DMS, Raleigh, NC.

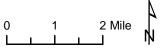
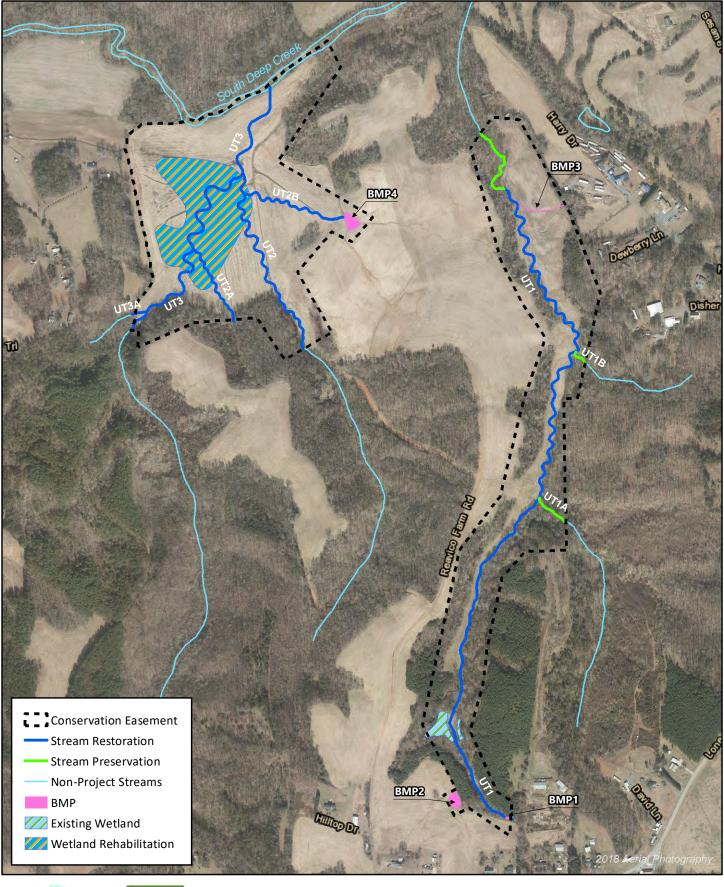



Figure 1 Project Vicinity Map Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 0 - 2019

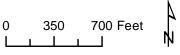
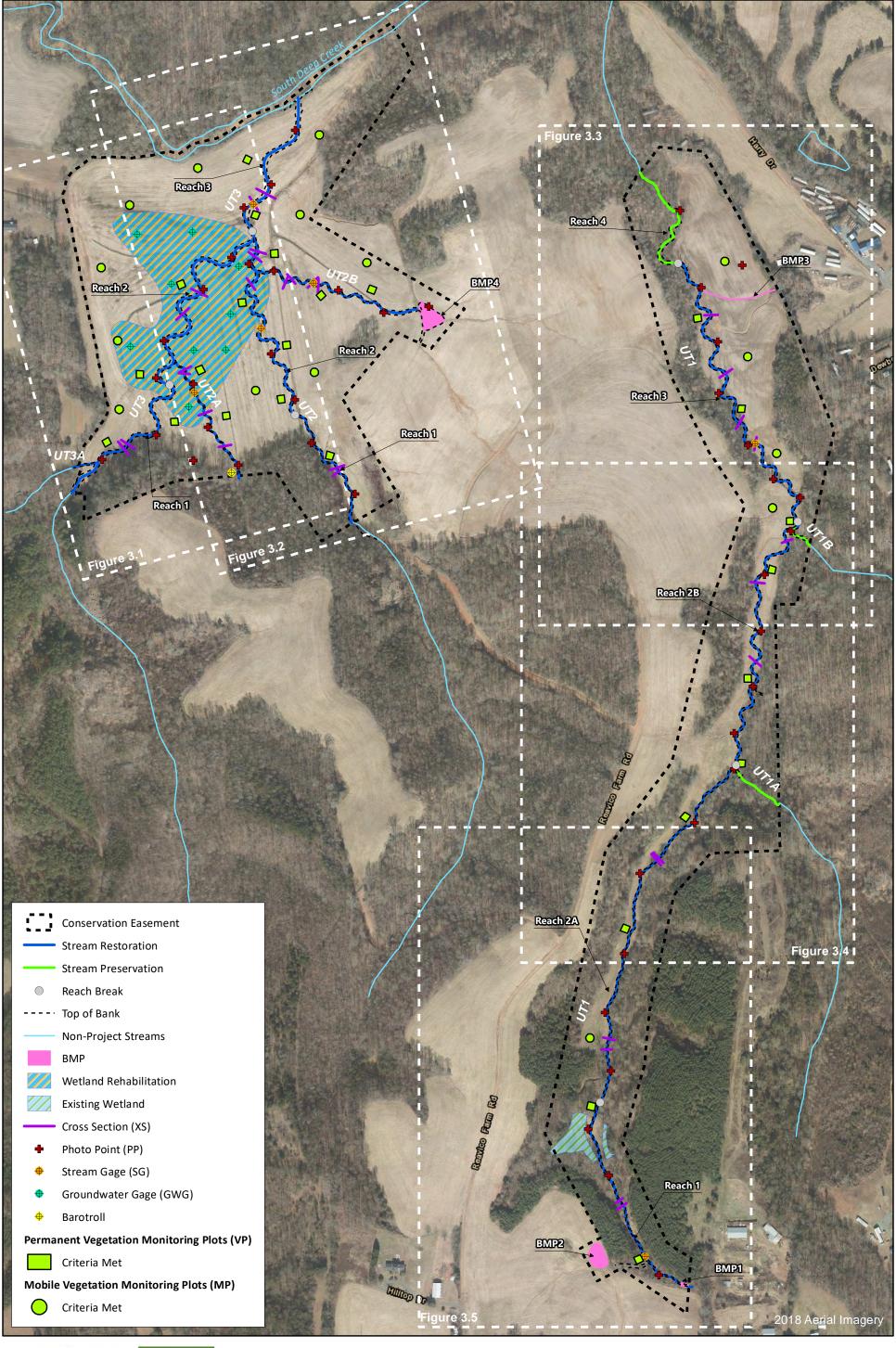



Figure 2 Project Component/Asset Map Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 0 - 2019

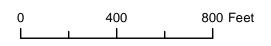
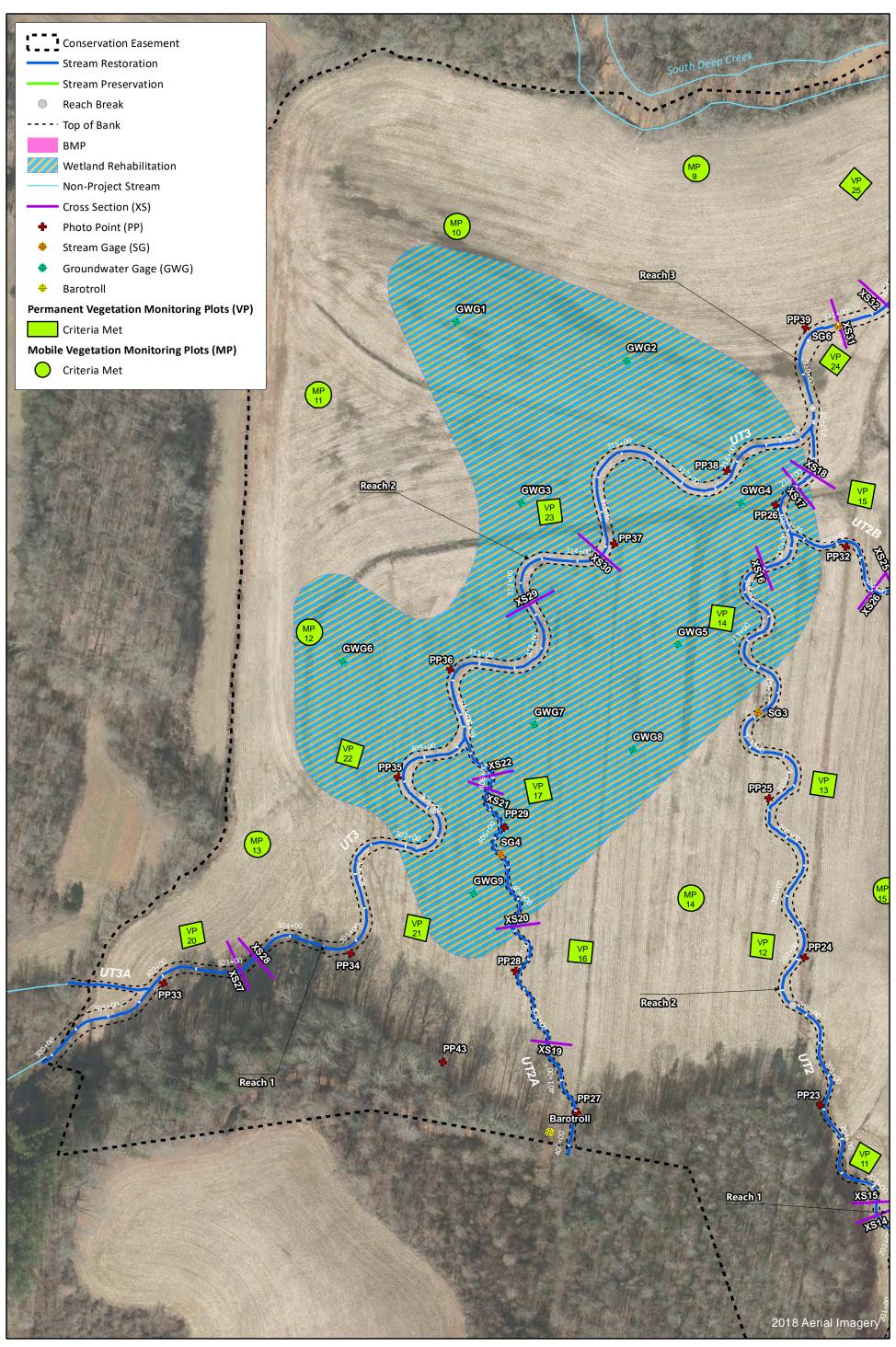



Figure 3.0 Monitoring Plan View Map (Key)
Lone Hickory Mitigation Site
DMS Project No. 97135
Monitoring Year 0 - 2019

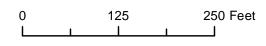
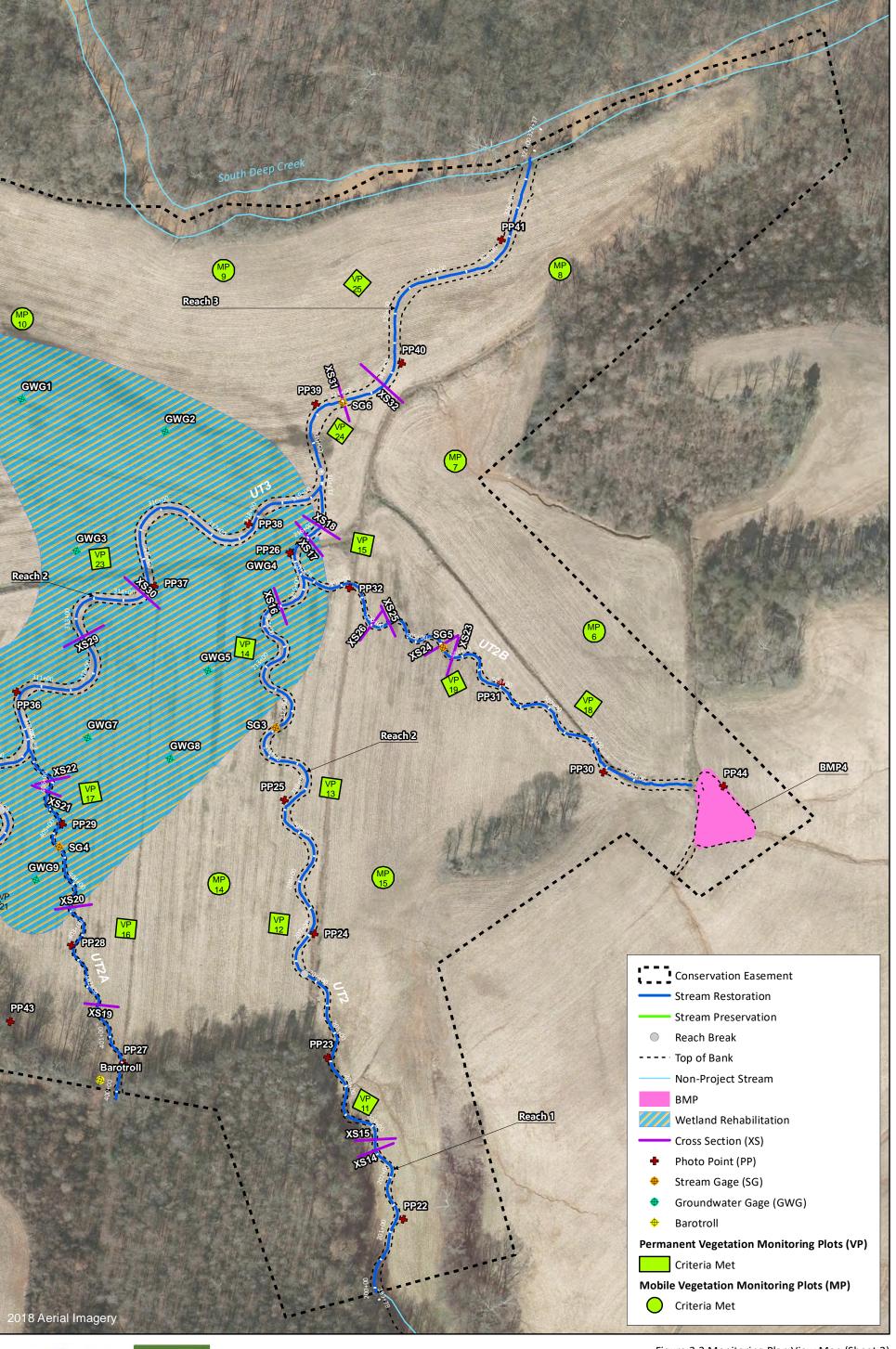
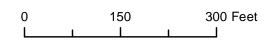
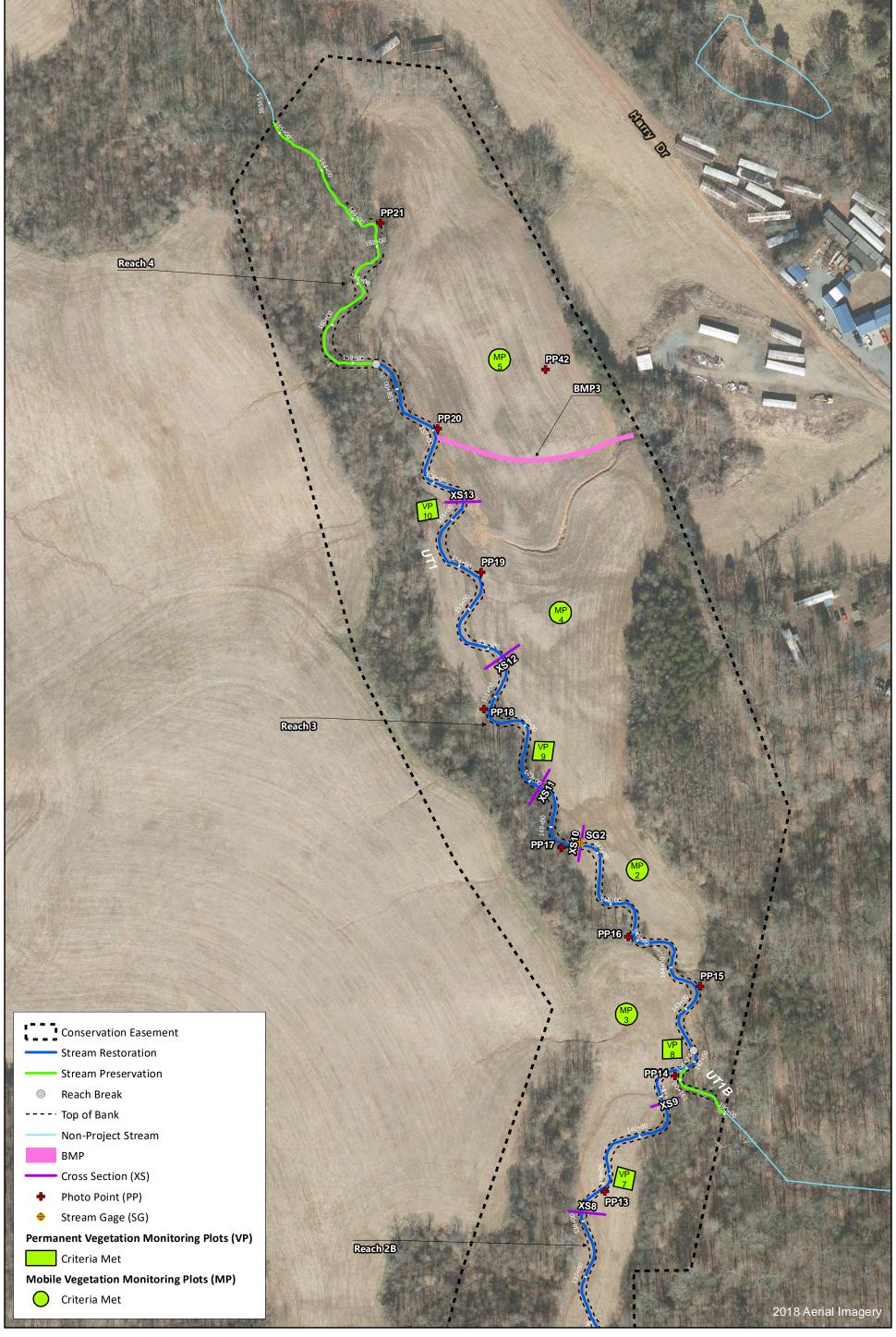



Figure 3.1 Monitoring Plan View Map (Sheet 1)
Lone Hickory Mitigation Site
DMS Project No. 97135
Monitoring Year 0 - 2019

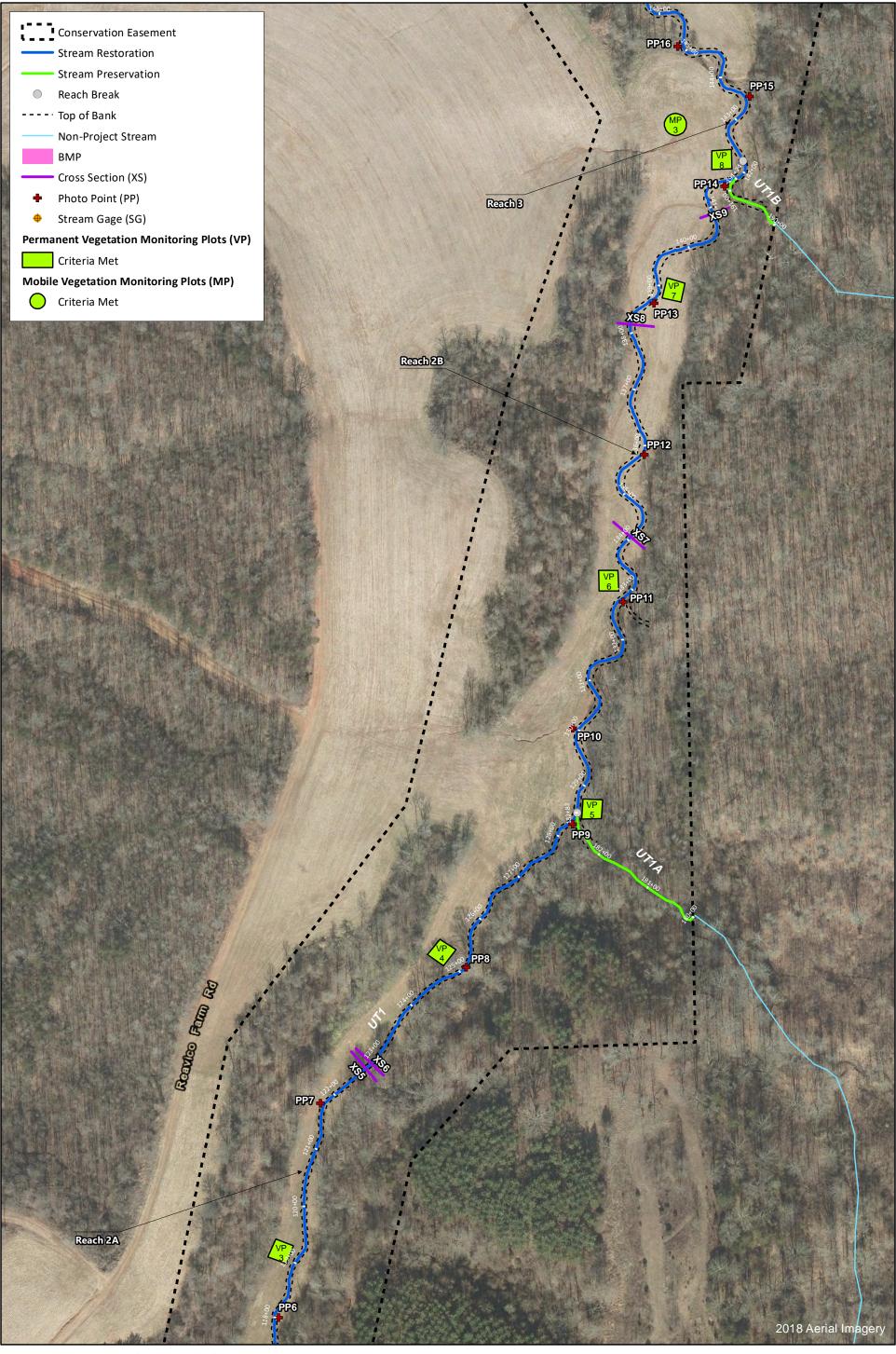


Figure 3.2 Monitoring Plan View Map (Sheet 2)
Lone Hickory Mitigation Site
DMS Project No. 97135
Monitoring Year 0 - 2019

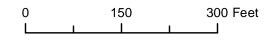
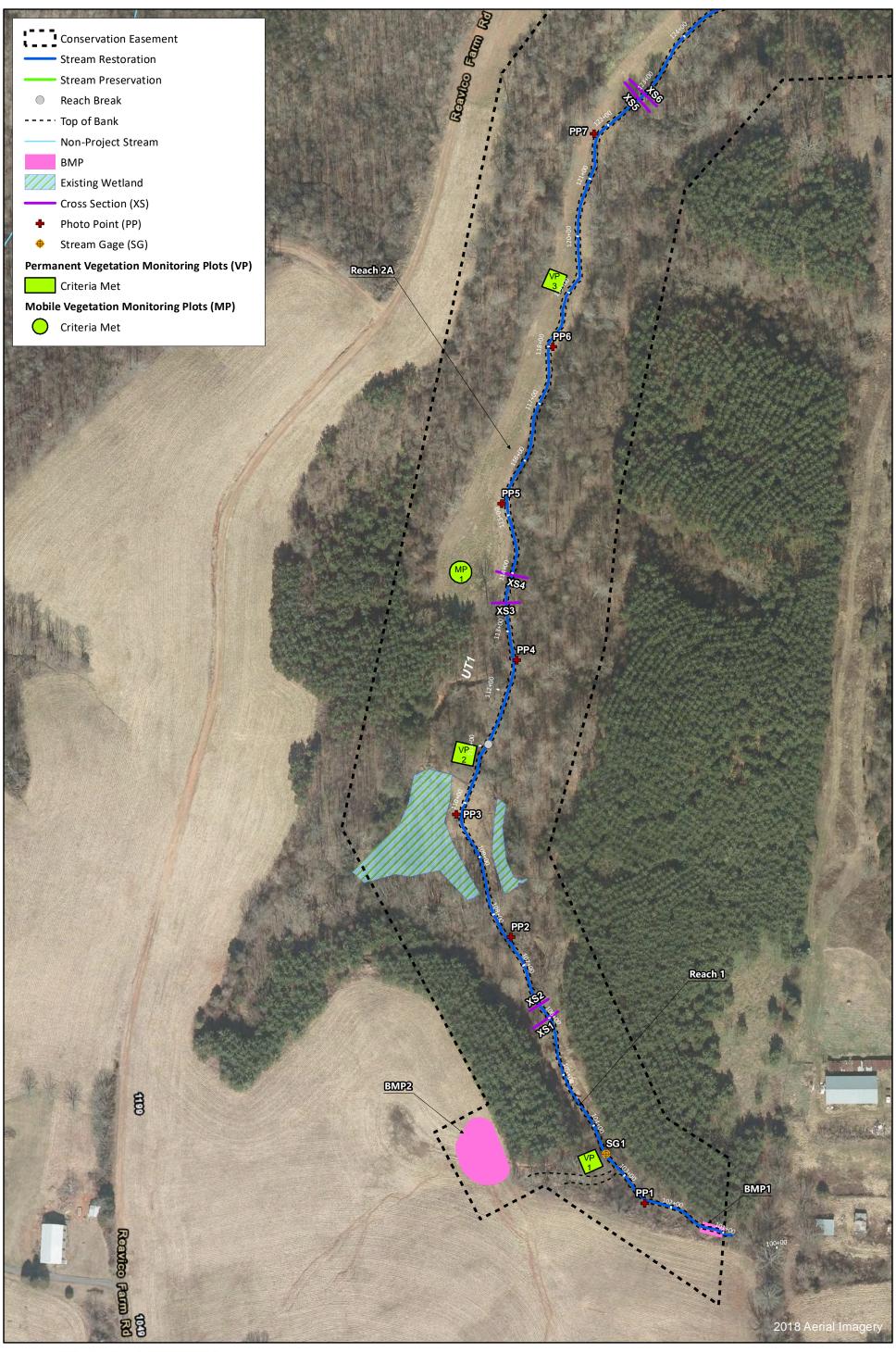



Figure 3.4 Monitoring Plan View Map (Sheet 4)
Lone Hickory Mitigation Site
DMS Project No. 97135
Monitoring Year 0 - 2019

0 150 300 Feet

Figure 3.5 Monitoring Plan View Map (Sheet 5) Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 0 - 2019

Table 1. Mitigation Assets and Components

Lone Hickory Mitigation Site DMS Project No. 97135 **Monitoring Year 0 - 2019**

Project Components												
Project Area/Reach	Existing Footage (LF) or Acreage	Mitigation Plan Footage/ Acreage	Mitigation Category	Restoration Level	Priority Level	Mitigation Ratio (X:1)	As-Built Footage/ Acreage	Project Credit ¹²				
UT1, R1, R2a, R2b, R3	6,015	5,721	Warm	Restoration	P1, P2	1.000	5,721	6,698				
UT1 R4	659	659	Warm	Preservation	P4	10.000	659	66				
UT1A	230	282	Warm	Preservation	N/A	10.000	282	28				
UT1B	48	124	Warm	Preservation	N/A	10.000	123	12				
UT2 R1, R2	2,527	1,703	Warm	Restoration	P1, P2	1.000	1,703	1,933				
UT2A	1,184	655	Warm	Restoration	P1	1.000	655	699				
UT2B	699	784	Warm	Restoration	P1, P2	1.000	776	893				
UT3 R1, R2, R3	2,008	2,702	Warm	Restoration	P1, P2	1.000	2,702	2,835				
West Side Wetlands	N/A	9.5	Warm	Re-establishment		1.000	9.5	9.5				

	Project Credits											
Restoration Level		Stream		Riparian W	etland	Non-Riparian						
Restoration Level	Warm	Cool	Cold	Riverine	Non-Riv	Wetland	Coastal Marsh					
Restoration	13,058.000	N/A	N/A	9.500	N/A	N/A	N/A					
Re-establishment				N/A	N/A	N/A	N/A					
Rehabilitation				N/A	N/A	N/A	N/A					
Enhancement				N/A	N/A	N/A	N/A					
Enhancement I	N/A	N/A	N/A									
Enhancement II	N/A	N/A	N/A									
Creation				N/A	N/A	N/A	N/A					
Preservation	106.000	N/A	N/A	N/A	N/A	N/A						
Totals	13,164.000	N/A	N/A	9.500	N/A	N/A	N/A					

Notes:

- 1. No direct credit for BMPs.
- 2. Credits reported have been adjusted based on buffer width deviations from standard 50-foot buffer width.

Table 2. Project Activity and Reporting History

Lone Hickory Mitigation Site DMS Project No. 97135 **Monitoring Year 0 - 2019**

Activity or Rep	ort	Data Collection Complete	Completion or Delivery
404 Permit		April 2018	April 2018
Mitigation Plan		July - December 2016	December 2017
Final Design - Construction Plans		June 2018	June 2018
Construction		Oct 2018 - April 2019	Oct 2018 - April 2019
Temporary S&E mix applied to entire project a	area ¹	Oct 2018 - April 2019	Oct 2018 - April 2019
Permanent seed mix applied to reach/segmen	nts	Oct 2018 - April 2019	Oct 2018 - April 2019
Bare root and live stake plantings for reach/se	egments	February 2019 - April 2019	April 2019
Baseline Monitoring Document (Year 0)		February 2019 - May 2019	June 2019
V 444 :: :	Stream Survey	2019	
Year 1 Monitoring	Vegetation Survey	2019	November 2019
Voca 2 Manitaria	Stream Survey	2020	N
Year 2 Monitoring	Vegetation Survey	2020	November 2020
Voca 2 Manitaria	Stream Survey	2021	N
Year 3 Monitoring	Vegetation Survey	2021	November 2021
Vers 4 Manitesia s	Stream Survey	2022	N
Year 4 Monitoring	Vegetation Survey	2022	November 2022
Vees E Mareitagia e	Stream Survey	2023	N
Year 5 Monitoring	Vegetation Survey	2023	November 2023
Voor & Monitoring	Stream Survey	2024	November 2024
Year 6 Monitoring	Vegetation Survey	2024	November 2024
Voor 7 Monitoring	Stream Survey	2025	Nevember 2025
Year 7 Monitoring	Vegetation Survey	2025	November 2025

¹Seed and mulch is added as each section of construction is completed.

Table 3. Project Contact Table

Lone Hickory Mitigation Site DMS Project No. 97135 **Monitoring Year 0 - 2019**

Designers	Wildlands Engineering, Inc.
Emily Reinicker, PE, CFM	1430 South Mint Street, Suite 104
	Charlotte, NC 28203
	704.332.7754
Construction Contractors	KBS Earthworks, Inc.
	5616 Coble Church Road
	Julian, NC 27283
Planting Contractor	Bruton Natural Systems, Inc.
	PO Box 1197
	Freemont, NC 27830
Seeding Contractor	KBS Earthworks, Inc.
Seed Mix Sources	KBS Earthworks, Inc.
Nursery Stock Suppliers	
Bare Roots	Pruton Natural Systems Inc
Live Stakes	Bruton Natural Systems, Inc.
Herbaceous Plugs	
Monitoring Performers	Wildlands Engineering, Inc.

Table 4. Project Information and Attributes

Lone Hickory Mitigation Site DMS Project No. 97135

Monitoring Year 0 - 2019

				Project	t Informatio	n						
				Project	liniormatic	ווע						
Project Name	Lone Hickory Mi	itigation Site										
Troject Name	Yadkin County											
Project Area (acres)	103.000											
Project Coordinates (latitude and longitude)	s (latitude and longitude) 36° 5' 39.16"N 80° 40' 2.14"W											
lanted Acreage (Acre of Woody Stems Planted) 99.000												
Project Watershed Summary Information												
Physiographic Province	Piedmont Physic	ographic Provinc			•							
River Basin	Yadkin River	og. aprile : rovine										
USGS Hydrologic Unit 8-digit	03040101											
USGS Hydrologic Unit 14-digit	0304010113002	20										
DWR Sub-basin	03-07-02	-										
Project Drainage Area (acres)		170 (UT2 - West	Side), 392 (UT3	3 – West Side)								
Project Drainage Area Percentage of Impervious Area				(UT3 – West Side)							
	UT1 - East Side:	Forest (39%), Cu	Itivated (42%),	Grassland (4%), S	Shrubland (7%),	Urban (8%), Oper	n Water (0%)					
2011 NLCD Land Use Classification), Grassland (9%),								
				, Grassland (5%),								
				Reach Sum			` '					
Parameters		U ⁻	Г1		UT1A	UT1B	U	Г2	UT2A	UT2B	U	Г3
	R1	R2A/R2B	R3	R4			R1	R2	Ī		R1 R	2 R3
Length of reach (linear feet) - Post-Restoration	966	3.114	1.641	659	282	123	623	1,080	655	776	779 1,1	59 764
Valley confinement (Confined, moderately confined, unconfined)	Confined	Confined	to moderately		Confined	Confined		ned to unconfined	Unconfined	Unconfined	Moderately confir	ned to unconfined
Drainage area (acres)		28	36	•	92	31	1	70	27	6	39	12
Perennial, Intermittent, Ephemeral	I/P	Р	Р	Р	Р	Р)	I/P	Р	F)
NCDWR Water Quality Classification		WS	i-III	•	WS-III	WS-III	WS	-111	WS-III	WS-III	WS	-111
Morphological Description (stream type) - Pre-Restoration		G, Straigth	ened E/G		-	-	G	G	G	G	G (i G
Morphological Description (stream type) - Post-Restoration	Α	В	С	-	-	-	В	С	С	C/Cb	Bc (
Evolutionary trend (Simon's Model) - Pre- Restoration	,	III/I		•	VI	VI	III/I		III/IV/V	IV/V	IV,	/ V
FEMA classification	Last 400LF in	n Zone AE backw	ater from Sout	h Deep Creek	None	None		Z	one AE backwate	r from South Dee	ep Creek	
			\	Netland Sur	nmary Info	rmation						
Parameters							West Side Wetlar	nds				
Size of Wetland (acres)	9.5											
Wetland Type	Riparian Riverin	P										
Mapped Soil Series		Dan River and Co	mus soils									
Drainage class		ly drainage/well										
Soil Hydric Status	Yes/No	., a. amage, wen	a. anicu									
Source of Hydrology	Groundwater											
Restoration or enhancement method (hydrologic, vegetative etc.)	Re-establishmer	nt										
				Regulator	y Considera	tions						
Regulation		Applicable?		Regulator	-	tesolved?				Supporting Doc	rumontation	
					, ,			LICACE No.		Supporting Doo	Umentation 101 Water Quality Certific	ation No. 4124
Waters of the United States - Section 404	+	Yes		+		Yes		USACE Nat				auon NO. 4154.
Waters of the United States - Section 401	+	Yes		-		Yes				ACE Action ID #SA		200
Division of Land Quality (Erosion and Sediment Control)	Yes Yes NPDES Construction Stormwater General Permit NCG010000 Yes Yes Categorical Exclusion Document in Mitigation Plan											
Endangered Species Act Historic Preservation Act	+	Yes Yes		+		Yes		-			ment in Mitigation Plan	
	+	Yes No		+		N/A		-	Categorica	N/A		
Coastal Zone Management Act (CZMA)/Coastal Area Management Act (CAMA)	+			+				 	Vadlia Com			1
FEMA Floodplain Compliance	+	Yes		-		Yes			radkin Count		elopment Permit #2017-	h
ential Fisheries Habitat No N/A N/A												

Table 5a. Monitoring Component Summary

Lone Hickory Mitigation Site DMS Project No. 97135 **Monitoring Year 0 - 2019**

East Side

			Qı	uantity / Le					
Parameter	Monitoring Feature	UT1 Reach	UT1	UT1	UT1 Reach	1174.6	LIT4D	Frequency	Notes
		1	Reach 2	Reach 3	4	UT1A	UT1B		
Dimension	Riffle Cross-Section	1	4	2	N/A	N/A	N/A	Year 1, 2, 3, 5, and 7	1
Differision	Pool Cross-Section	1	3	2	N/A	N/A	N/A	Teal 1, 2, 3, 3, and 7	1
Pattern	Pattern	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2
Profile	Longitudinal Profile	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2
Substrate	Reach Wide (RW)	1 RW	1 RW	1 RW	NI/A	NI/A	N/A	Voor 1 2 2 E and 7	3
Substrate	Pebble Count	IKW	1 KVV	TKAA	N/A	N/A	IN/A	Year 1, 2, 3, 5, and 7	3
Hydrology	Crest Gage (CG) and	150 1665		1 SG 1 CG & SG			Semi-Annual	4	
Hydrology	or/Transducer (SG)	1 30	100	Q 30				Semi-Amidai	4
Vegetation	CVS Level 2/Mobile		1	5 (10 perma	Year 1, 2, 3, 5, and 7	5			
vegetation	plots		1	3 (10 perma	real 1, 2, 3, 3, and 7	5			
Visual Assessment				١	Semi-Annual				
Exotic and Nuisance Vegetation					Semi-Annual	6			
Project Boundary					Semi-Annual	7			
Reference Photos	Photographs		•		22			Annual	

Notes:

- 1. Cross-sections were permanently marked with rebar to establish location. Surveys include points measured at all breaks in slope, including top of bank, bankfull, edge of water, and thalweg.
- 2. Pattern and profile will be assessed visually during semi-annual site visits. Longitudinal profile was collected during as-built baseline monitoring survey only, unless observations indicate widespread lack of vertical stability (greater than 10% of reach is affected) and profile survey is warranted in additional years to monitor adjustments or survey repair work.
- 3. Riffle 100-count substrate sampling were collected during the baseline monitoring only.
- 4. Crest gages and/or transducers will be inspected quarterly or semi-annually, evidence of bankfull events will be documented with a photo when possible. Transducers, if used, will be set to record stage once every 2 hours. The transducer will be inspected and downloaded semi-annually. A transducer will be installed on the intermittent portion of UT1 Reach 1 and in UT2A to document 30 days of continuous flow.
- 5. Permanent vegetation monitoring plot assessments will follow CVS Level 2 protocols. Mobile vegetation monitoring plot assessments will document number of planted stems, height, and species using a circular or 100 m2 square/rectangular plot. 2% of the non-shaded planted acreage will be monitored with permanent plots within the 50' stream buffer, and 1% of the non-shaded planted acreage will be monitored with mobile plots beyond the 50' stream buffer. Planted shaded areas will be visually assessed.
- 6. Locations of exotic and nuisance vegetation will be mapped.
- 7. Locations of vegetation damage, boundary encroachments, etc. will be mapped.

Table 5b. Monitoring Component Summary

Lone Hickory Mitigation Site DMS Project No. 97135 **Monitoring Year 0 - 2019**

West Side

Parameter	Monitoring Feature	UT2 Reach 1	UT2 Reach 2	UT2A	UT2B	UT3 Reach 1	UT3 Reach 2	UT3 Reach 3	Wetland Re- establishment	Frequency	Notes	
Dimension	Riffle Cross-Section	1	2	2	2.000	1	1	1	N/A	Voor 1 2 2 5 and 7	1	
Dimension	Pool Cross-Section	1	1	2	2.000	1	1	1	N/A	Year 1, 2, 3, 5, and 7	1	
Pattern	Pattern	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2	
Profile	Longitudinal Profile	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2	
Substrate	Reach Wide (RW) Pebble Count	1 RW	1 RW	1 RW	1 RW	1 RW	1 RW	1 RW	N/A	Year 1, 2, 3, 5, and 7	3	
Stream Hydrology	Crest Gage (CG) and/or Transducer (SG)	1 CG	G & SG	1 CG & SG	1 CG & SG		1 CG & SG		N/A	Semi-Annual	4	
Wetland Hydrology	Groundwater Gages								9	Quarterly		
Vegetation	CVS Level 2/Mobile Plots					Year 1, 2, 3, 5, and 7	5					
Visual Assessment						Semi-Annual						
Exotic and Nuisance Vegetation			Semi-Annual 6									
Project Boundary			Semi-Annual 7									
Reference Photos	Photographs		22 Annual									

Notes:

- 1. Cross-sections were permanently marked with rebar to establish location. Surveys include points measured at all breaks in slope, including top of bank, bankfull, edge of water, and thalweg.
- 2. Pattern and profile will be assessed visually during semi-annual site visits. Longitudinal profile was collected during as-built baseline monitoring survey only, unless observations indicate widespread lack of vertical stability (greater than 10% of reach is affected) and profile survey is warranted in additional years to monitor adjustments or survey repair work.
- 3. Riffle 100-count substrate sampling was collected during the baseline monitoring only.
- 4. Crest gages and/or transducers will be inspected quarterly or semi-annually, evidence of bankfull events will be documented with a photo when possible. Transducers, if used, will be set to record stage once every 2 hours. The transducer will be inspected and downloaded semi-annually. A transducer will be installed on the intermittent portion of UT2A to document 30 days of continuous flow.
- 5. Permanent vegetation monitoring plot assessments will follow CVS Level 2 protocols. Mobile vegetation monitoring plot assessments will document number of planted stems, height, and species using a circular or 100 m2 square/rectangular plot. 2% of the non-shaded planted acreage will be monitored with permanent plots within the 50' stream buffer, and 1% of the non-shaded planted acreage will be monitored with mobile plots beyond the 50' stream buffer. Planted shaded areas will be visually assessed.
- 6. Locations of exotic and nuisance vegetation will be mapped.
- 7. Locations of vegetation damage, boundary encroachments, etc. will be mapped.

APPENDIX 2. Morphological Summary Data and Plot	S

Table 6a. Baseline Stream Data Summary

Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 0 - 2019

East Side

East Side																			"	<i>-</i>			
			Pre-	Restorat	ion Conc	ition					Des	sign							As-Built,	/Baselin	e		
Parameter	Gage		Reach 1		each 2		each 3		teach 1	UT1 Re			each 2B		each 3		teach 1		each 2A		each 2B	UT1 R	
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle																		1					
Bankfull Width (ft)			4.8		3.9	10			5.5	7.			0.7		1.8		5.9		7.3	10.3	10.5	11.3	12.5
Floodprone Width (ft)			3.1		3.2	31		15	50	15	50	25	100	25	100		29	46	65+	49+	68+	60+	68+
Bankfull Mean Depth (ft)			0.8		0.8	1).5	0.			0.8		.8		0.6).6		.8	0	
Bankfull Max Depth (ft)			3.8		3 '.2	13	.9).6 3.0	0. 4.			l.0 3.1		.0		l.0 l.2	0.9	1.0	1.2	1.3	1	
Bankfull Cross-sectional Area (ft²)	N/A																	4.5	4.6	7.9	8.5	8.3	8.7
Width/Depth Ratio			6.2 2.7		1.0	7.			4.2 .2+	2.:			4.3 .2+		1.6 2+		1.5 1.2	11.5	11.8	12.9	13.3	15.5	18.0
Entrenchment Ratio			3.8		5 !.6	1			.2+ L.0	1.			.2+ L.0		.0		L.O	6.3	9.0+	4.7+	6.6+	5.3+	5.4+
Bank Height Ratio			15.1		1.0	19											9.6	37.0	37.9	35.6	45.0		47.4
D ₅₀ (mm)		1	13.1	4	1.0	15	9.0	_		-	-			_		3:	9.0	37.0	37.9	35.6	45.0	41.6	47.4
Profile																							
Riffle Length (ft)									T				T			21/21	1		T			—	
Riffle Slope (ft/ft)								0.020	0.041	0.011	0.055	0.018	0.045	0.016	0.048	N/A ¹	N/A ¹	0.003	0.068	0.013	0.072	0.013	0.055
Pool Length (ft) Pool Max Depth (ft)	N/A		1.4	1	4	1	7	1	7	1.	0	2	3.2	2	.9	1.1	3.0	1.3	2.8	1.8	3.1	1.8	3.7
Pool Spacing (ft)		5	20	29	42	18	32	14	26	16	39	34	109	48	113	5	76	6	51	1.8	145	41	129
Pool Volume (ft ³)			20	23	42	10	32	14	20	10	33	34	109	40	113	3	70	0	31	10	143	41	125
Pattern Pool Volume (It)																							
Channel Beltwidth (ft)		6	12	T .		12	14		/A ²	N/	, 2	31	67	35	71		/a ²		/A ²	31	67	35	71
		3	8	<u> </u>		5	12					20	38	19	38		/A ²			20		19	38
Radius of Curvature (ft)									/A ²	N/							/A ²		/A ²		38		
Rc/Bankfull Width (ft/ft)	N/A	0.6	1.7	-		5	12		/A ²	N/		1.9	3.6	1.6	3.2	•	/A ²		/A ²	1.9	3.6	1.7	3.0
Meander Length (ft)		9	19			14	43		/A ²	N/		102	190	102	196		/A ²		/A ²	102	190	102	196
Meander Width Ratio		1.3	2.5			1.2	1.4	N,	/A ²	N/	A ²	2.9	6.3	3.0	6.0	N,	/A ²	N,	/A ²	3.0	6.4	3.1	5.7
Substrate, Bed and Transport Parameters																							
Ri%/Ru%/P%/G%/S%																							
SC%/Sa%/G%/C%/B%/Be%		CC/0.27	/2 7/54 2/	4.25/44	0/20/00/	0.40/0.3	0/0.70/2									0.4/4.0/	22.0/400	0.2/11.1	/24 6 /67	0.2/0.4	/22.6/50	0.2/46/5	E C/C2 4
D ₁₆ /D ₃₅ /D ₅₀ /D ₈₄ /D ₉₅ /D ₁₀₀	N/A	75.9	/3.7/54.2/ 9/128		.0/38/90/ L/2048	0.19/0.3 6.3/52										/156.	'33.9/108 .5/256		1/21.6/67 17/362		.7/362	0.3/16/2 /113.	
Reach Shear Stress (Competency) lb/ft ²									.74	0.9			.75		76		.97	1.06	1.08	0.85	0.88	0.65	0.68
Max part size (mm) mobilized at bankfull								2	28	14	16	1	.23	1	25	9	97	52	53	42	43	32	33
Stream Power (Capacity) W/m ²																							
Additional Reach Parameters																							
Drainage Area (SM)		0	0.07		.37	0.	45	0.	.07	0.			.32	0.	44	0.	.07	0.	.12		.32	0.	44
Watershed Impervious Cover Estimate (%)					8%						3									%			
Rosgen Classification			E5b		64		4		A 4	В			C4		24		44		4b		24		4
Bankfull Velocity (fps)			2.9		1.8	4			1.1	3.			3.8		.0		1.8	3.9	4.0	4.1	4.2	3.7	3.8
Bankfull Discharge (cfs)			11		35		i5	1	11	1	5		30	- 3	18	20	0.2	17.7	18.3	32.7	36.2	30.4	31.0
Q-NFF regression (2-yr)	N/A								14	1			34		12								
Q-USGS extrapolation (1.2-yr)									01	30			04		18							-	
Max Q-Mannings	l		0411)454	0.0			01	0.0			0225		203								
Valley Slope (ft/ft) Channel Thalweg Length (ft)		0.0	0411		015	0.0	U+7		66	1,7			368		541		66		746		368		 541
Channel Thalweg Length (π) Sinuosity		1	.08		.04	1.	13	,	00	1,/	0		.25		30		00	1,	, 40		.25		30
Bankfull/Channel Slope (ft/ft)			0295)256	0.0		0.0	0622	0.0	290)180		156	0.0)555	0.0	292		182	0.0	
1 LIT1 Peach 1 riffle clones were not calculated because								5.0		0.0		5.0		3.0		5.0		3.0		3.0		5.0	

Bankfull/Channel Slope (ft/ft) 0.0295 0.0256 0.010:

1. UT1 Reach 1 riffle slopes were not calculated because this reach is comprised of a series of rock steps and cascades.

^{2.} Pattern data is not applicable for A-type and B-type channels

SC: Silt/Clay <0.062 mm diameter particles

^{(---):} Data was not provided

N/A: Not Applicable

Table 6b. Baseline Stream Data Summary

Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 0 - 2019

Parameter Gage UTB Reach UTB	West Side - UT2, UT2A, UT2B																								
Discription of the content of the				Pre-	Restoration Cond	lition							De	sign		1					As-built,	Baselin/	e	·	
Demonstrate Assistant Reads (Marked) (F) Ready	Parameter	Gage	UT2 Reach 1	UT2 Reach 2	UT2 Reach 3	UT2A		UT	г2В	UT2 R	each 1	UT2 R	each 2	UI	Γ 2 Α	U	Т2В	UT2 R	each 1	UT2 R	each 2	U	'2A	UT	2B
Bunkful Wideh (Fig.) Fig. Proof Fig. P			Min Max	Min Max	Min Max	Min I	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Properties Pro																									
Bashfulf Mase Optic (1) Bashfulf (Coss-ectional Area (1)) Coss C	Bankfull Width (ft)						3.9					_												
Bankfull Max Depth (Pt)		_											-												
Send-full Cross-extrowal Acts Price Pric							0.7																		
The control property of the	Bankfull Max Depth (ft)			1.1 0.9 5.7 2.2 2.3 12.3 5.1 9.5 1.5 1.6 2.4 3.1 2.7 3.1													_							
Entreetment Nation Bask the great Plane					5.7																				
## And Property March Profile																									
Profile)																							
Riffle Length (H) Riff							3.1									_									
Riffle Length (ft) Pool Max Depth (ft) P)	34.4	11.4						_		_		_				2	5.9	25.4	33.4	21.0	28.1	25.1	30.6
Riffle slope (fifty) Float Legisty (fit) Float Depting (fit)		,			ı	1.5										1								1	
Pool largeff (ii) Pool Mac Peth (ii) Pool Mac Peth (ii) Pool Mac Peth (ii) Pool Volume (it) Pool					Name				0.020	0.024	0.002	0.025	0.006	0.045	0.004	0.056	0.006	0.024	0.004	0.035	0.001	0.046	0.001	0.027	
Pool Max Depth filt		_			Min Max Min					0.020	0.034	0.003	0.025	0.006	0.045	0.004	0.056	0.006	0.034	0.004	0.035	0.001	0.046	0.001	0.037
Pool Spacing (ft) Pattern Pool Spacing (ft) Pattern Pool Volume (ft) Pool V			1.2	1.5	1.5					1 1	1.0	1.1	2.5	0.6	1.4	0.8	1.0	1.2	2.5	2.1	3.2	0.0	1.3	1.5	2.7
Political Pattern Poli		-			Min Max Min																				
Channel Bellwidth (ft)		_	24 30	22 77						Ü	1 43	33		13	33	20	33	15	,,,	73	127	10			
Channel Seltwidth (ft)	,	,																	<u> </u>					<u> </u>	
Radius of Curvature (t) Refrankfull Width (Infit) Refrankfull Width (Infit) Reach Shear Stress (Dougleton) Infit) Reach Shear Stress (Dougleton) Infit) Reach Shear Stress (Dougleton) Infit))					T	-		N.	/Δ ¹	39	88	19	44	26	60	N	/Δ ¹	39	88	19	44	26	60
Rc/Bankfull Width (ft/ft)	,	4 1						_								-									
Meander Length (ft) Meander Length (ft) Meander Width Ratio	`	_									•					-	_								
Meander Width Ratio Substrate, Bed and Transport Parameters Risk, Ms, Ms, Ms, Ms, Ms, Ms, Ms, Ms, Ms, Ms	, , , , , , , , , , , , , , , , , , , ,	_														-									
Substrate, Bed and Transport Parameters		_									•						_								
RRIS/Rus/Ps/Gs/Ss/Ss/Gs/Gs/Gs/Ss/Gs/Gs/Gs/Ss/Gs/Gs/Gs/Gs/Gs/Gs/Gs/Gs/Gs/Gs/Gs/Gs/Gs		,								IN,	/A	3.3	8.0	3.3	8.0	3.3	8.0	IN	'A	3.3	7.4	3.3	7.7	3.0	0.5
SCX/SaX/G%/CX/B%/BeX		á																							
D ₁₈ /D ₃₅ /D ₅₆ /D ₈₆ /D ₉₆ /D ₁₈₀ D ₁₈ /D		_																							
Max part size (mm) mobilized at bankfull Stream Power (Capacity) W/m² Additional Reach Parameters 112 221				0.25/0.59/1.1	17.9/35.9/90		-			-	-		-												
Stream Power (Capacity) W/m²	Reach Shear Stress (Competency) lb/ft	2						-		0.	.66	1.	66	-				0	79	0.33	0.38				-
Additional Reach Parameters Drainage Area (SM) 0.14 0.26 0.27 0.02 0.04 0.14 0.26 0.02 0.05 0.14 0.26 0.02 0.05 Watershed Impervious Cover Estimate (%) Rosgen Classification 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1%	Max part size (mm) mobilized at bankful	I				-		1	.12	22	21	-				3	19	16	19				-		
Drainage Area (SM) Watershed Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps) Bankfull Velocity (fps) Bankfull Discharge (cfs) 19 14 10 4 2 3 14 20 4 8 24.0 23.6 28.9 3.7 5.1 10.1 10.1 1.02 1.05 1.00 1.10 1.30 1.20 1.20 1.10 1.30 1.20 1.20 1.10 1.30 1.20 1.20 1.10 1.30 1.20	Stream Power (Capacity) W/m	2																							
Watershed Impervious Cover Estimate (%) Rosgen Classification Rosgen Classification Bankfull Velocity (fps) 3.4 2.3 1.8 1.6 1.8 1.7 1.8 3.4 2.6 1.9 2.0 3.9 2.6 2.8 1.9 2.1 2.3 2.6 2.8 2	Additional Reach Parameters				8.4 3. 13.0 5. 0.7 0. 1.1 5.7 2. 12.3 5. 1.5 1. 3.1 2 1.5 44 23 68 9/1.1/17.9/35.9/90 0.27 65 1.8 1. 10 0.0086																				
Rosgen Classification Bankfull Velocity (fps) 3.4 2.3 1.8 1.6 1.8 1.7 1.8 3.4 2.6 1.9 2.0 3.9 2.6 2.8 1.9 2.1 2.3 2.6 2.8 2	Drainage Area (SM)	0.14		0.7 0.5 1.1 0.5 1.1 0.5 1.2 12.3 5.1 1.5 1.6 3.1 2.7	0.02		0.	.04	0.			26	0.	.02	0	.05	0.			.26	0	.02	0.0) 5
Bankfull Velocity (fps Bankfull Velocity (fps Bankfull Velocity (fps Bankfull Discharge (cfs 19 14 10 4 2 3 14 20 4 8 24.0 23.6 28.9 3.7 5.1 10.	Watershed Impervious Cover Estimate (%)			1.5											1									
Bankfull Discharge (cfs) Q-NFF regression (2-yr) Q-USGS extrapolation (1.2-yr) Max Q-Mannings Walley Slope (ft/ft) Channel Thalweg Length (ft) Sinussity 19 14 10 4 2 3 14 20 4 8 24.0 23.6 28.9 3.7 5.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1						1.5 23 68																			
Q-NFF regression (2-yr) Q-USGS extrapolation (1.2-yr) Max Q-Mannings					12.3 5.1 1.5 1.6 3.1 2.7 1.5 1.6 3.1 2.7 1.5 1.6 1.6 1.5 1.6 1.6 1.5 1.6 1.6 1.5 1.6 1.6 1.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	1.8																			
O-USGS extrapolation (1.2-yr)			_		_					1	٠4	2	0		4		8	2.	1.0	23.6	28.9	3.7	5.1	10.1	10.1
Max Q-Mannings		N/A				1.5 1.6 3.1 2.7				1	10	2	0		1		0								
Valley Slope (ft/ft) 0.0205 0.0123 0.0086 0.0028 0.0027 0.0280 0.045 0.0130 0.0060 0.0400		-			1.5 23 68																				
Channel Thalweg Length (ft) 2,527 1,184 699 623 1080 655 776 623 1,080 655 776 Sinuosity 1.01 1.02 1.05 1.00 1.00 1.10 1.30 1.20 1.10 1.30 1.20 1.10 1.30 1.20 1.20						7.9/35.9/90 0.27 0.02 G5 G5 1.8 1.6 10 4 0.0086 0.0028 1,184 1.05 1.00																			_
Sinusity 1.01 1.02 1.05 1.00 1.00 1.10 1.30 1.20 1.20 1.10 1.30 1.20 1.20 1.10 1.30 1.20			0.0203		0.0000	7.9/35.9/90 0.27 0.02 G5 G5 1.8 1.6 1 10 4 0.0086 0.0028 1,184 1.05 1.00																			
Sindosity		_	1.01		1.05					_					1	-		-						-	
			0.0154	0.0062	0.0086	0.0052	2	0.0	107	0.0	200	0.0030	0.0120	0.0050	0.0140	0.0040	0.0280	0.0	180	0.0	072	0.0	110	0.03	115

Pattern data is not applicable for B-type channels

SC: Silt/Clay <0.062 mm diameter particles

(--): Data was not provided

N/A: Not Applicable

Table 6c. Baseline Stream Data Summary

Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 0 - 2019

West Side - UT3

West Side - UT3								_	··					a - D. Ye	/D 1		
			Pre- Res	toration				De	sign					As-Built,	Baselin	e	
Parameter	Gage	UT3 R	each 1	UT3 R	leach 2	UT3 R	each 1	UT3 R	each 2	UT3 R	each 3	UT3 F	each 1	UT3 R	each 2	UT3 R	each 3
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle								,						,			
Bankfull Width (ft)	1		L.2		0.0		3.0		5.2		9.0		3.7		5.7		9.2
Floodprone Width (ft)	-		7.4		50+		'5		00+	42	219		3+		6+	7:	
Bankfull Mean Depth (ft)			.2		1.0	0			.0		.1		1.9	1			.0
Bankfull Max Depth (ft)	1		.8		2.1	1	.4 2.1		.7 5.2		.0 1.1		5		.9		.9
Bankfull Cross-sectional Area (ft²)	N/A		3.7		0.2								2.8		5.5		9.5
Width/Depth Ratio	_		.1		9.9		1.4		5.2		7.1		4.7		7.0		9.0
Entrenchment Ratio	-	1			1.9+	1.4	2.2+		2+		2+		.3+		5+		7+
Bank Height Ratio	_		.6		1.4		.0		.0		.0		.0		.0		.0
D ₅₀ (mm)		1.	2.5	Г ,).9	-						5	0.0	3:	1.2	47	7.0
Profile																	
Riffle Length (ft) Riffle Slope (ft/ft)	1					0.013	0.017	0.003	0.022	0.002	0.000	0.001	0.022	0.000	0.013	0.0003	0.005
	1					0.012	0.017	0.002	0.022	0.002	0.008	0.001	0.023	0.002	0.012	0.0002	0.005
Pool Length (ft) Pool Max Depth (ft)	N/A	1	.9	2	2.7	1.9	3.3	1.5	3.5	1.7	3.9	2.8	3.9	2.5	4.1	3.3	3.9
Pool Spacing (ft)	1	12	87	48	185	169	1014	57	113	67	133	64	163	53	186	83	180
Pool Volume (ft ³)	1	12	- 67	40	103	103	1014	37	113	07	133	04	103	- 33	100	83	100
Pattern Pool volume (it)								l		l				l			
Channel Beltwidth (ft)		4	10			N/	/a1	57	130	67	152		/A ¹	57	130	67	152
` `	1	4						29		34							
Radius of Curvature (ft)			8			N,			57		67		/A ¹	29	57	34	67
Rc/Bankfull Width (ft/ft)	N/A	0.4	0.7			N,		1.8	3.5	1.8	3.5		/A ¹	1.7	3.4	1.8	3.5
Meander Length (ft)		15	28			N,		105	227	124	266		/A ¹	105	227	124	266
Meander Width Ratio		0.4	0.9			N,	/A¹	3.5	8.0	3.5	8.0	N	/A ¹	3.4	7.8	3.5	7.9
Substrate, Bed and Transport Parameters																	
Ri%/Ru%/P%/G%/S%																	
SC%/Sa%/G%/C%/B%/Be%	1																
D ₁₆ /D ₃₅ /D ₅₀ /D ₈₄ /D ₉₅ /D ₁₀₀	N/A	0.22/0.8 6/47	7/2.5/22. .7/64		/0.24/4.6 .7/16	-		-		-			0.4/59.2/ 3/180).2/41.6/ /180	SC/SC/S 1.8/	
Reach Shear Stress (Competency) lb/ft ²		-				0.	61	-		-		0	.42	-		-	
Max part size (mm) mobilized at bankful		-				10	06	-		-			21	-		-	
Stream Power (Capacity) W/m ²																	
Additional Reach Parameters																	
Drainage Area (SM)		0.	59		.65	0.	63		63	0.	88	0	.63		.63	0.	88
Watershed Impervious Cover Estimate (%)				!%					%						.%		
Rosgen Classification			i4		35		4c		24		24		C4		C4		C4
Bankfull Velocity (fps)	4		.0		2.0		.6		.7		.8		.0		.9		.8
Bankfull Discharge (cfs)	4		1.8		0.4		15		15		55	3	8.6	33	1.1	16	5.0
Q-NFF regression (2-yr)	N/A					-											
Q-USGS extrapolation (1.2-yr)	1		-				3		6		71						
Max Q-Mannings	4						70		19		/A ²						
Valley Slope (ft/ft)		0.0	145		0050		120		0.0140		022		70				
Channel Thalweg Length (ft)	4			008	0.4	7			159		64		79	1,:			64
Sinuosity	4		06		.01		10		40		20		.10		40		20
Bankfull/Channel Slope (ft/ft)		0.0	107	0.0	0034	0.0	110	0.0020	0.0110	0.0	020	0.0	075	0.0	027	0.0	005

^{1.} Pattern data is not applicable for B-type channels

^{2.} UT3 Reach 3 post-restoration combines flow from the existing conditions UT2 Reach 3 and UT3. SC: Silt/Clay <0.062 mm diameter particles

^{(---):} Data was not provided N/A: Not Applicable

Table 7. Reference Reach Data Summary

Lone Hickory Mitigation Site DMS Project No. 97135

Monitoring Year 0 - 2019

									Reference	Reach Dat	a						
Parameter	Gage	UT to Kel	ly Branch	Pilot Mou	ntain Trib		ckory UT3 - Reference	UT to Sout	h Crowders		rk Catawba reserve	UT to Ly	le Creek	Deep Cree	k Mitigation	Cooleemee	Plantation
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle								1	1			1	,				
Bankfull Width (ft)		6.		8.			6.7	6.1	8.4	6.1	6.2	7.0	8.6		.2.9	14.7	18.1
Floodprone Width (ft)		9.		13			20.0	26.0	31.0		00+	45.0	49.0		35.0		10+
Bankfull Mean Depth		0.		0.			0.5	1.0	1.1	0.7	0.8		.5		1.4	0.8	1.0
Bankfull Max Depth		0.		1.			0.8		1.4	1.3	1.4	1.0	1.1		2.3		6
Bankfull Cross-sectional Area (ft ²)	N/A	4.		6.			3.6	6.4	8.7	4.5	5.3	3.5	4.1		.7.1	13.6	14.9
Width/Depth Ratio		9.		12			13.4	5.8	8.0	7.4	8.3	14.9	18.3		9.6	14.6	24.1
Entrenchment Ratio		1.		1.			3.0	3.7	4.3		0+	5.7	6.4		.0.5		.8+
Bank Height Ratio		1.		1.			1.0	1.4	2.1		0		.0		1.0		0
D50 (mm)		9.	4		-												
Profile				1												1	
Riffle Length (ft)				0.0150		0.0000			0.0004								
Riffle Slope (ft/ft)				0.0150	0.1200	0.0229	0.0615	0.0202	0.0664		260	0.0055	0.0597	0.0019	0.009	0.0027	0.0130
Pool Length (ft) Pool Max Depth (ft)	N/A			1.			2.0				4		.3		3.2		.0
Pool Max Depth (tt) Pool Spacing (ft)				7	.b 52	13	77	1.3 28	3 63		4 15	15	.3	29	103	19	35
				/	52	13		28	63		+3	15	28	29	103	19	35
Pool Volume (ft ³)																	
Pattern Cl. 10 10 10 10 10 10 10 10 10 10 10 10 10		10		ı		- 10	1 24	T .	24	1			11	1 45	1 74	- 22	20
Channel Beltwidth (ft)		18	34			12	31		81				21	45	71	22	30
Radius of Curvature (ft)	N1 / A	8	26					9	20			19	32	18	33	14	38
Rc/Bankfull Width (ft/ft)	N/A	1.2	4.1					1.5	2.4			2.7	3.7	1.4	2.6	0.9	2.3
Meander Length (ft)		27	94			1.0	55	45	72			39	44	95	130	58	70
Meander Width Ratio		2.8	5.3		-	1.8	4.6	9.6	13.3			2.4	3.0	3.5	5.5	1.3	1.8
Substrate, Bed and Transport Parameters								1				1		1			
Ri%/Ru%/P%/G%/S%																	
SC%/Sa%/G%/C%/B%/Be%		0.25/2.2/0	4 / 45 / 4 40 /	CC/F C/20 /	1/120/222	0.2/4.5/4	C 0/C0 7/11	0.0/12.1/1	0.7/40.5/75			NA /0 07 /0	17/0 54/4	56/0.2/0.2	// / / / 0 0 / 2 2		
d16/d35/d50/d84/d95/d100	N/A	0.25/3.2/9.	4/45/140/	SC/5.6/20.1 5/>2			/180	0.8/12.1/1 .9/	9.7/49.5/75 180				.17/0.54/4. 8.0		/1.1/8.9/22. 6	-	
Reach Shear Stress (Competency) lb/ft ²																	
Max part size (mm) mobilized at bankfull																	
Stream Power (Capacity) W/m ²																	
Additional Reach Parameters																	
Drainage Area (SM)		0.0	08	0.3	27		0.17	0	.22	0	.94	0.	25	0).67	0.	.68
Watershed Impervious Cover Estimate (%)			-									-				-	
Rosgen Classification		Α	4	В	4		C4		E4		5	(5		C5	(25
Bankfull Velocity (fps)		4.		5.			3.2		2.9		11		.7		2.4		8
Bankfull Discharge (cfs)		1	9	3	2		12		22		54	1	.8		41	- 2	26
Q-NFF regression (2-yr)																	
Q-USGS extrapolation (1.2-yr)	N/A																
Q-Mannings																	
Valley Length (ft)			-	-	-							-					
Channel Thalweg Length (ft)																	
Sinuosity		1.		1.0			1.32		.20		.03		10		60		.10
Water Surface Slope (ft/ft)																	
Bankfull/Channel Slope (ft/ft) SC: Silt/Clay < 0.062 mm diameter particles		0.03 -	0.065	0.03	378	0	0185	0.0	0091	0.0	068	0.0	057	0.0	0028	0.0	027

SC: Silt/Clay <0.062 mm diameter particles (---): Data was not provided N/A: Not Applicable

Table 8a. Morphology and Hydraulic Summary (Dimensional Parameters - Cross-Section) Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 0 - 2019

Bankfull Width/Depth Ratio 18.0

Bankfull Entrenchment Ratio 5.4+

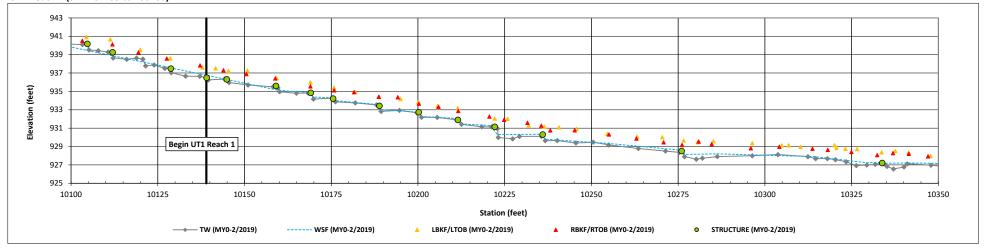
Bankfull Bank Height Ratio 1.0

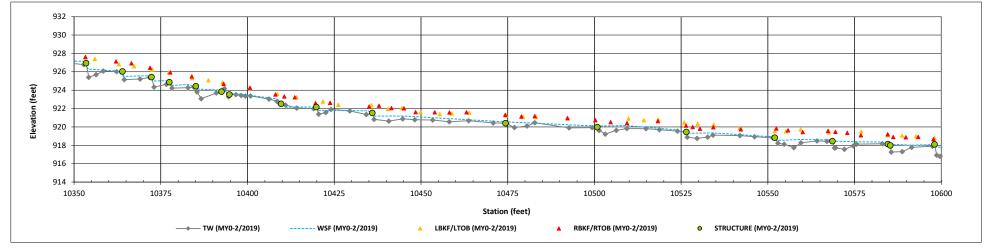
		UT	L Reach	1 Cros	s-Section	on 1, Po	ool			UT1	Reach	1 Cross	-Sectio	n 2, Rifi	fle			UT1	Reach 2	2A Cros	s-Section	3, Poc			UT1	Reach :	2A Cros	s-Sectio	n 4, Ri	ffle			UT1	Reach 2	2A Cros	s-Sectio	on 5, Ri	iffle	
Dimension and Substrate	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4 N	/IY5	MY6 MY	7 Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY	6 M
bankfull elevation	918.84								918.21								870.19							868.46								844.23							
Bankfull Width (ft)	8.2								6.9								9.2							7.3								7.3							
Floodprone Width (ft)									29															46								65+							
Bankfull Mean Depth (ft)	1.0								0.6								1.2							0.6								0.6							
Bankfull Max Depth (ft)	1.8								1.0								2.1							0.9								1.0							
Bankfull Cross-Sectional Area (ft ²)	8.5								4.2								11.4							4.5								4.6							
Bankfull Width/Depth Ratio	7.8								11.5								7.4							11.8								11.5							
Bankfull Entrenchment Ratio									4.2															6.3								9.0+							
Bankfull Bank Height Ratio									1.0															1.0								1.0							
		UT1	Reach	2A Cros	ss-Secti	ion 6, P	ool			UT1	Reach :	2B Cros	s-Sectio	n 7, Rif	ffle			UT1	Reach 2	2B Cros	s-Section	8, Poc	ol .		UT1	Reach 2	B Cros	s-Sectio	n 9, Rif	fle			UT1	Reach 3	Cross-	-Sectior	10, Ri	iffle	
																																						$\overline{}$	
Dimension and Substrate	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4 N	/Y5	му6 му	7 Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY	6 M
bankfull elevation									817.28								809.31							804.58								794.10							
Bankfull Width (ft)	9.1								10.3								12.6							10.5								11.3							
Floodprone Width (ft)									68+															49+								60+							
Bankfull Mean Depth (ft)	1.2								0.8								1.2							0.8								0.7							
Bankfull Max Depth (ft)	1.9								1.2								2.6							1.3								1.1						1	\top
Bankfull Cross-Sectional Area (ft²)	10.5								7.9								15.4							8.5								8.3							
Bankfull Width/Depth Ratio	7.9								13.3								10.3							12.9								15.5							
Bankfull Entrenchment Ratio									6.6+															4.7+								5.3+							\pm
Bankfull Bank Height Ratio									1.0															1.0								1.0						+	$\overline{}$
		UT1	Reach	3 Cross-	Section	n 11. Ri	ffle			UT1	Reach	3 Cross	-Sectio	n 12, Po	ool			UT1	Reach 3	3 Cross-	Section 1	3. Poo			•								•						
Dimension and Substrate	Base							MY7	Base					MY5		MY7	Base						MY6 MY	7															
bankfull elevation								1	787.94								783.88																						
Bankfull Width (ft)	12.5				1				16.7								15.6																						
Floodprone Width (ft)	68+																																						
Bankfull Mean Depth (ft)									1.1								1.4																						
Bankfull Max Depth (ft)									2.4								2.6																						
Bankfull Cross-Sectional Area (ft²)	8.7								18.7								22.4																						
Bankfull Width / Donth Patio									1/1 8								10.0					-																	

10.9

14.8

Table 8b. Morphology and Hydraulic Summary (Dimensional Parameters - Cross-Section)
Lone Hickory Mitigation Site
DMS Project No. 97135

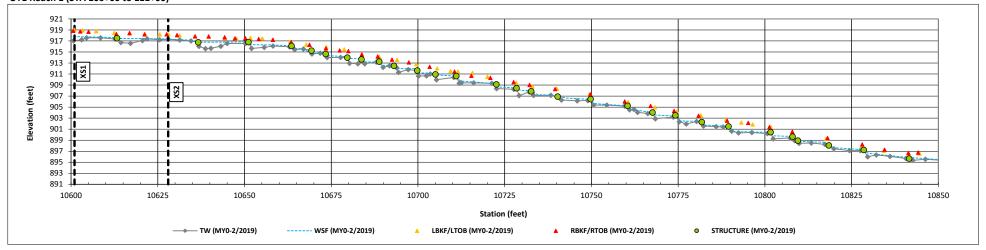

Monitoring Year 0 - 2019

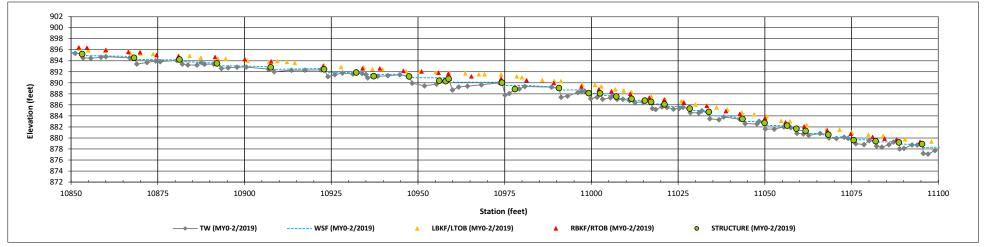

		UT2	Reach	1 Cross	-Sectio	n 14, P	ool			UT2	Reach	1 Cross	Section	n 15, Ri	ffle			UT2 F	Reach 2	Cross-S	ection 1	16, Riffle	2		UT2	Reach:	2 Cross	-Sectio	17, Ri	ffle			UT2	Reach:	2 Cross	-Section	18, P	ool	
Dimension and Substrate	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5 I	MY6 MY	7 Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY	6 M
bankfull elevation	772.71								772.61								759.49							758.87								758.62							
Bankfull Width (ft)	9.3								8.3								11.8							11.9								15.2							
Floodprone Width (ft)									69+								65+							72+															
Bankfull Mean Depth (ft)	0.8								0.7								0.9							0.8								1.4							
Bankfull Max Depth (ft)	1.5								1.2								1.3							1.2								2.5							Ш
Bankfull Cross-Sectional Area (ft ²)	7.6								6.1								10.2							9.1								21.8	1						
Bankfull Width/Depth Ratio	11.4								11.3								13.6							15.6								10.6							
Bankfull Entrenchment Ratio									8.3+								5.5+							6.1+															
Bankfull Bank Height Ratio									1.0								1.0							1.0															
		U	IT2A Cr	ross-Sec	tion 19	9, Riffle					UT2A C	ross-Se	ction 20	D, Pool				Ű	T2A Cro	ss-Secti	ion 21, I	Riffle				UT2A Cı	ross-Se	ction 22	2, Pool					UT2B Cr	ross-Se	ction 23	, Pool		
imension and Substrate	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5 I	MY6 MY	7 Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY	6 M
bankfull elevation	763.99								761.60								760.53							760.53								761.34							
Bankfull Width (ft)	5.4								6.9								5.7							7.2								9.9							
Floodprone Width (ft)	57+								-								51+																						
Bankfull Mean Depth (ft)	0.4								0.6								0.4							0.6								0.9							
Bankfull Max Depth (ft)	0.5								1.2								0.7							1.1								1.6							
Bankfull Cross-Sectional Area (ft2)	1.9								4.1								2.4							4.3								8.8				1 1			
Bankfull Width/Depth Ratio	15.2								11.6								13.6							12.1								11.2							T
Bankfull Entrenchment Ratio	10.5+																9.0+																						
Bankfull Bank Height Ratio	1.0																1.0																						
		U	T2B Cr	oss-Sec	tion 24	1, Riffle				Į.	JT2B Ci	oss-Sec	tion 25	i, Riffle				U	T2B Cro	oss-Secti	ion 26, I	Pool			UT3	Reach	1 Cross	-Sectio	n 27, Po	ool			UT3	Reach 1	L Cross-	-Section	28, Ri	iffle	
mension and Substrate	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5 I	MY6 MY	7 Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY	6 M
bankfull elevation	761.16								760.67								760.71							766.07								765.76							
Bankfull Width (ft)	9.6								7.2								12.2							16.0								13.7							
Floodprone Width (ft)	66+								56+																							73+							
Bankfull Mean Depth (ft)	0.5								0.5								1.3							1.4								0.9	\bot						Щ
Bankfull Max Depth (ft)	0.8								0.8								2.6							2.6								1.5							
Bankfull Cross-Sectional Area (ft ²)	4.3								3.9								15.8							21.7								12.8							
Bankfull Width/Depth Ratio	21.1								13.4								9.4							11.9								14.7							
Bankfull Entrenchment Ratio	6.9+								7.8+																							5.3+							
Bankfull Bank Height Ratio	1.0								1.0																							1.0							Ш
						n 29, Ri					Reach											31, Riffle						-Sectio											
mension and Substrate	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5 I	MY6 MY			MY2	MY3	MY4	MY5	MY6	MY7								
bankfull elevation									759.40								758.39							758.36															
Bankfull Width (ft)	16.7								18.7								19.2							25.8															
Floodprone Width (ft)	76+																71+																						
Bankfull Mean Depth (ft)	1.0								1.4								1.0							1.8															
Bankfull Max Depth (ft)	1.9					1			2.6		<u> </u>				<u> </u>	<u> </u>	1.9							3.8							<u> </u>								
Bankfull Cross-Sectional Area (ft ²)	16.5								26.3								19.5							45.8															
Bankfull Width/Depth Ratio	17.0								13.3								19.0							14.5															
	4.5+																																						
Bankfull Entrenchment Ratio Bankfull Bank Height Ratio																	3.7+ 1.0																						

Lone Hickory Mitigation Site DMS Project No. 97135

Monitoring Year 0 - 2019

UT1 Reach 1 (STA 101+39 to 106+00)

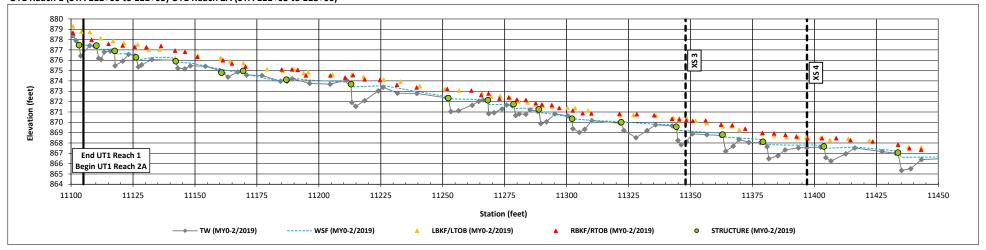


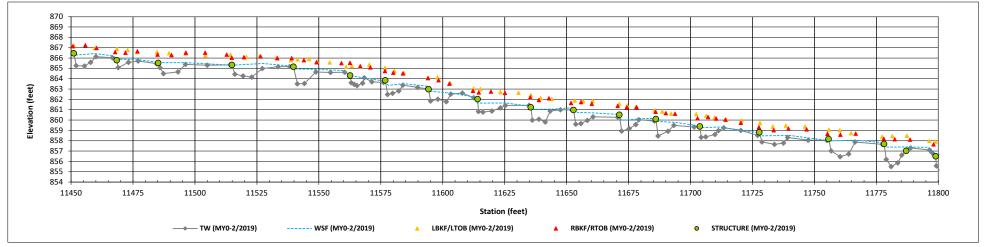


Lone Hickory Mitigation Site DMS Project No. 97135

Monitoring Year 0 - 2019

UT1 Reach 1 (STA 106+00 to 111+00)

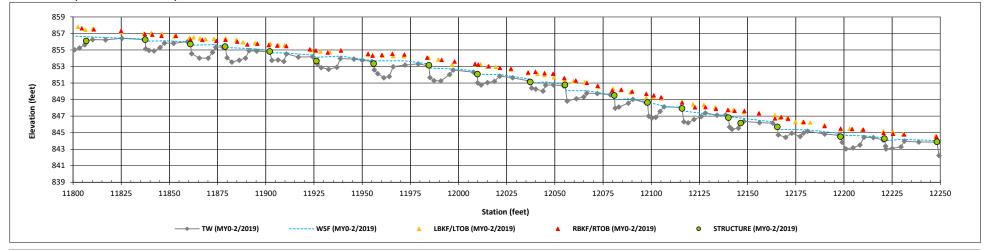


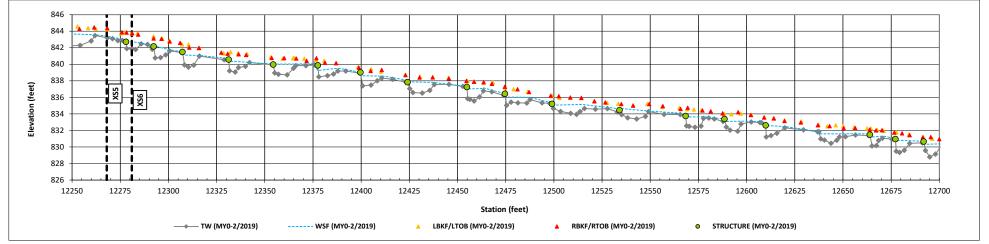


Lone Hickory Mitigation Site DMS Project No. 97135

Monitoring Year 0 - 2019

UT1 Reach 1 (STA 111+00 to 111+05) UT1 Reach 2A (STA 111+05 to 118+00)

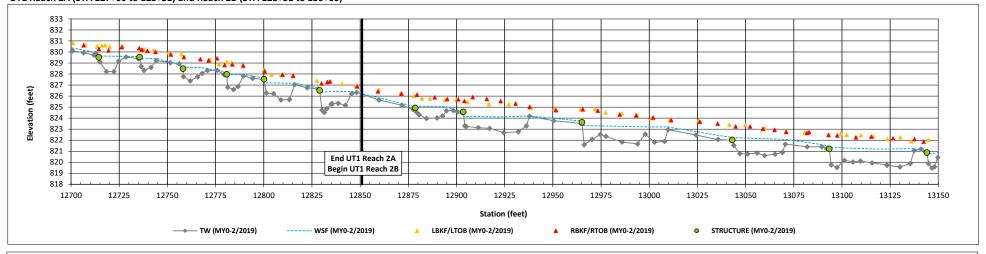


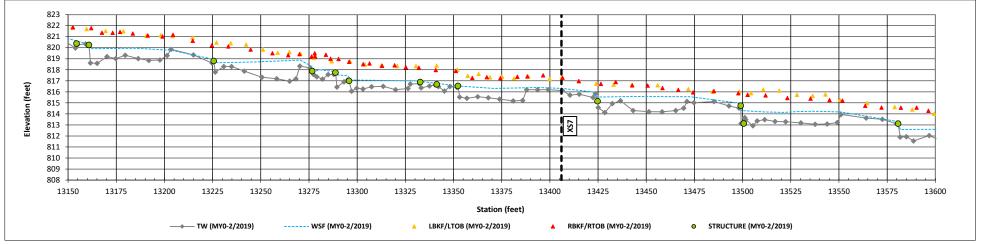


Lone Hickory Mitigation Site DMS Project No. 97135

Monitoring Year 0 - 2019

UT1 Reach 2A (STA 118+00 to 127+00)

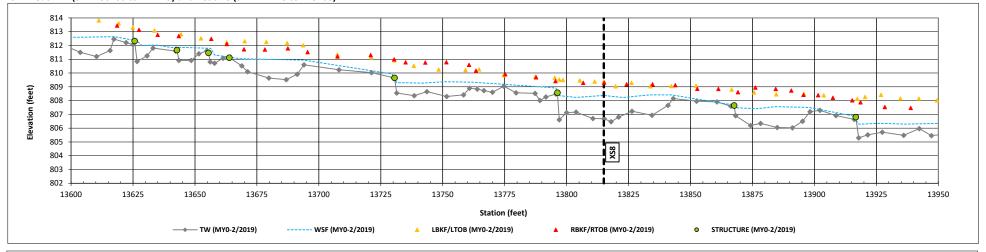


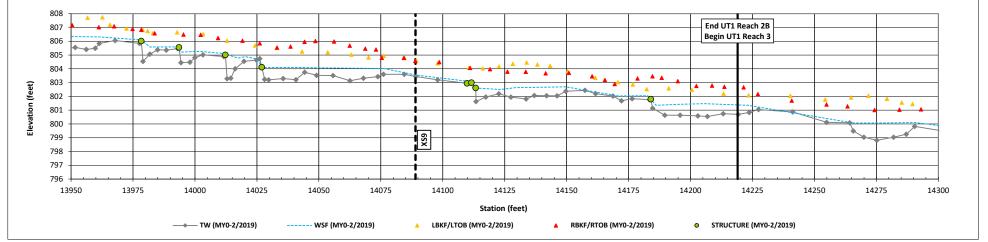


Lone Hickory Mitigation Site DMS Project No. 97135

Monitoring Year 0 - 2019

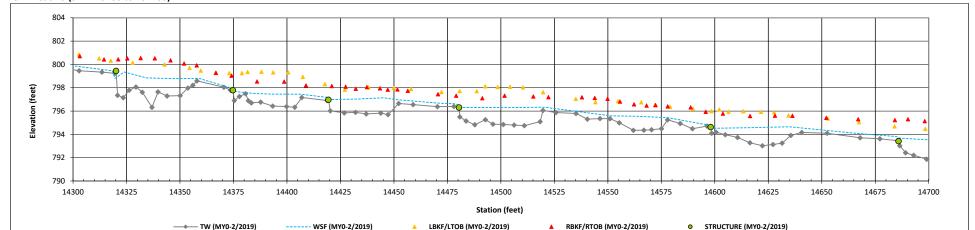
UT1 Reach 2A (STA 127+00 to 128+51) and Reach 2B (STA 128+51 to 136+00)

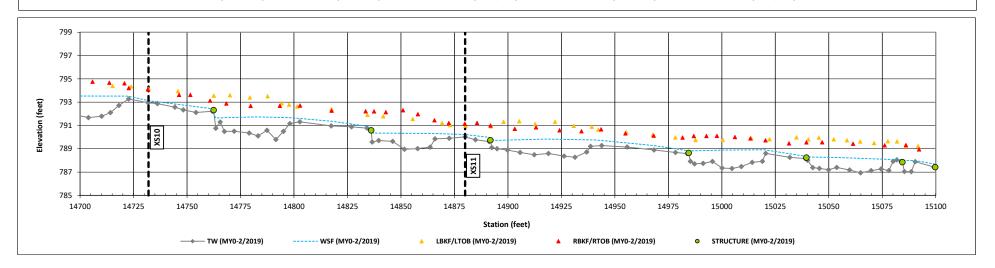




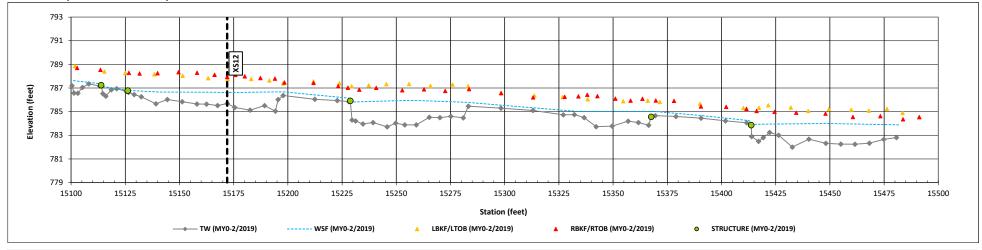
Lone Hickory Mitigation Site DMS Project No. 97135

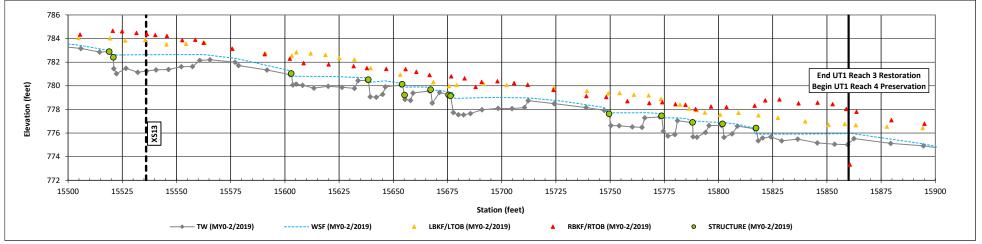
Monitoring Year 0 - 2019


UT1 Reach 2B (STA 136+00 to 142+19) and Reach 3 (STA 142+19 to 143+00)



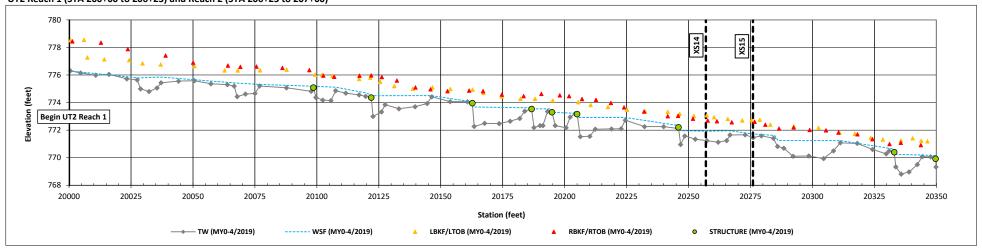
Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 0 - 2019

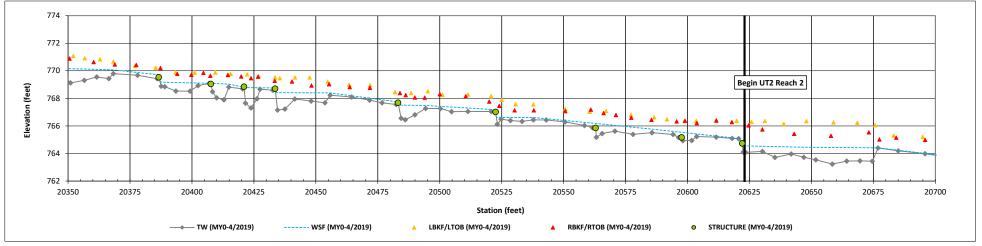

UT1 Reach 3 (STA 143+00 to 151+00)



Lone Hickory Mitigation Site DMS Project No. 97135 **Monitoring Year 0 - 2019**

UT1 Reach 3 (STA 151+00 to 158+60)

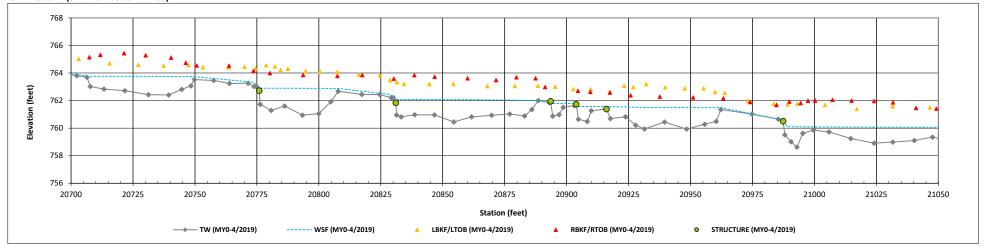


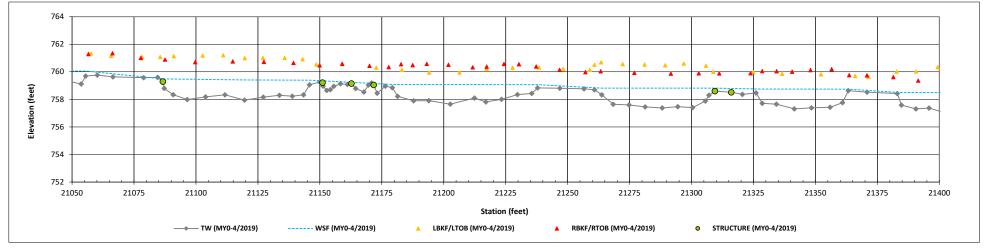


Lone Hickory Mitigation Site DMS Project No. 97135

Monitoring Year 0 - 2019

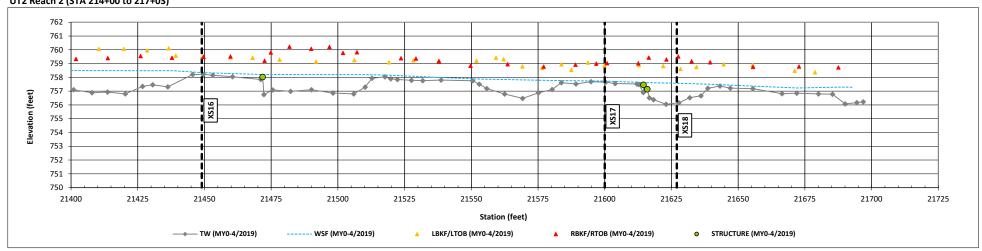
UT2 Reach 1 (STA 200+00 to 206+23) and Reach 2 (STA 206+23 to 207+00)



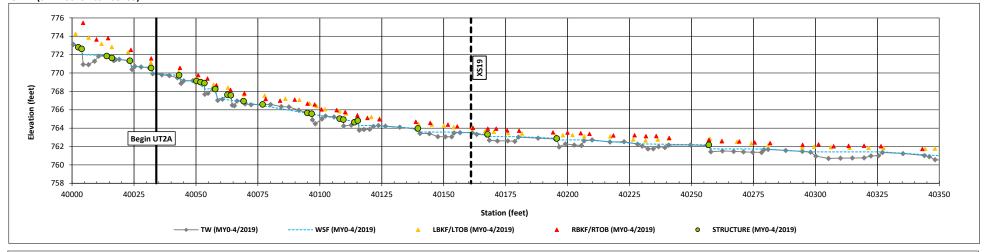


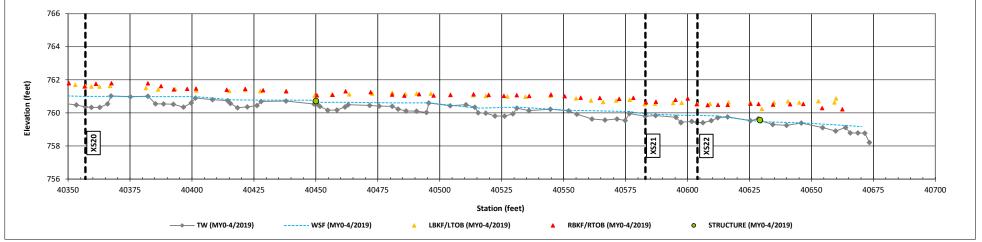
Lone Hickory Mitigation Site DMS Project No. 97135

Monitoring Year 0 - 2019


UT2 Reach 2 (STA 207+00 to 214+00)

Lone Hickory Mitigation Site DMS Project No. 97135 **Monitoring Year 0 - 2019**

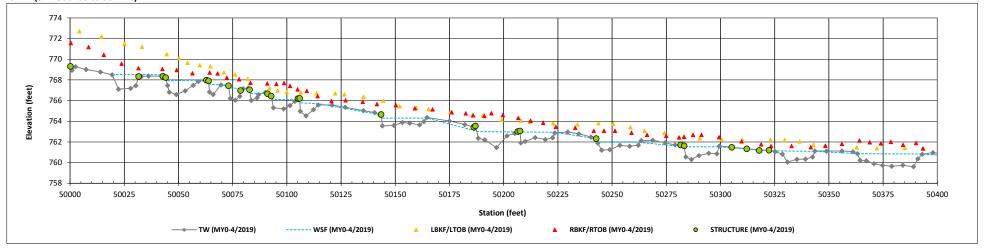

UT2 Reach 2 (STA 214+00 to 217+03)

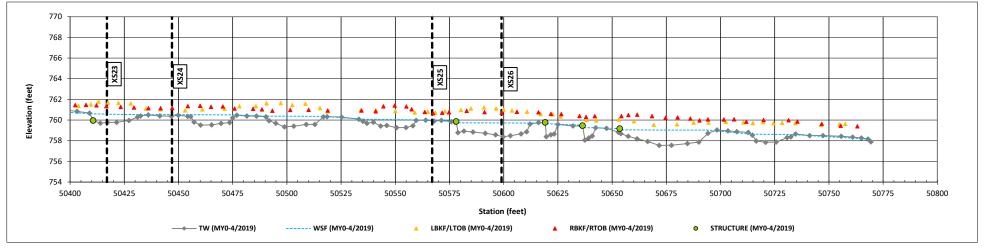


Lone Hickory Mitigation Site DMS Project No. 97135

Monitoring Year 0 - 2019

UT2A (STA 400+34 to 406+89)

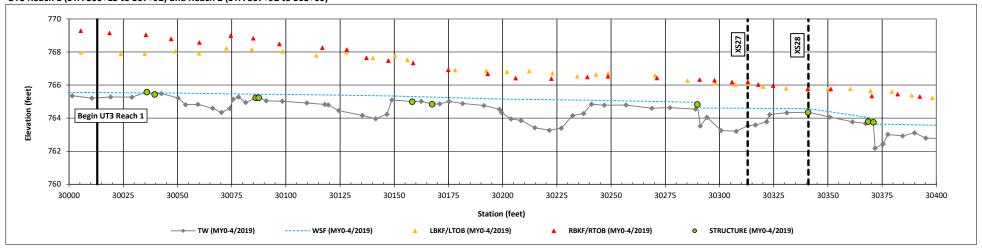


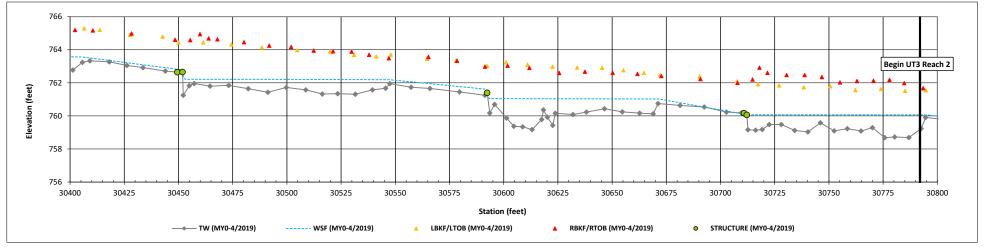


Lone Hickory Mitigation Site DMS Project No. 97135

Monitoring Year 0 - 2019

UT2B (STA 500+00 to 507+76)

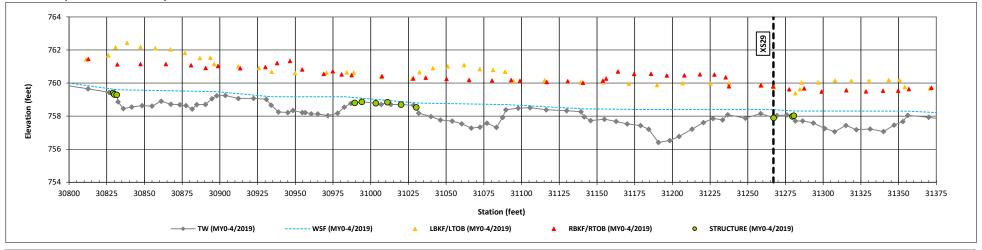


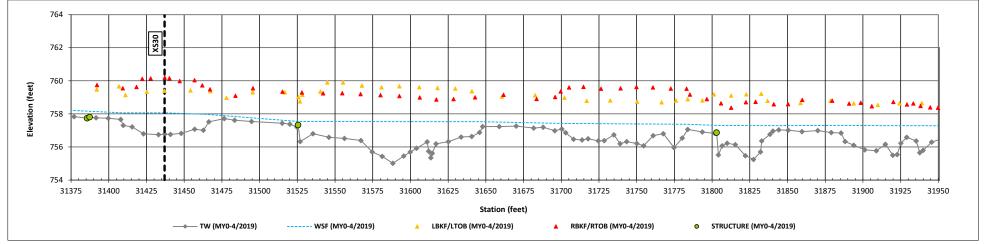


Lone Hickory Mitigation Site DMS Project No. 97135

Monitoring Year 0 - 2019

UT3 Reach 1 (STA 300+13 to 307+92) and Reach 2 (STA 307+92 to 308+00)

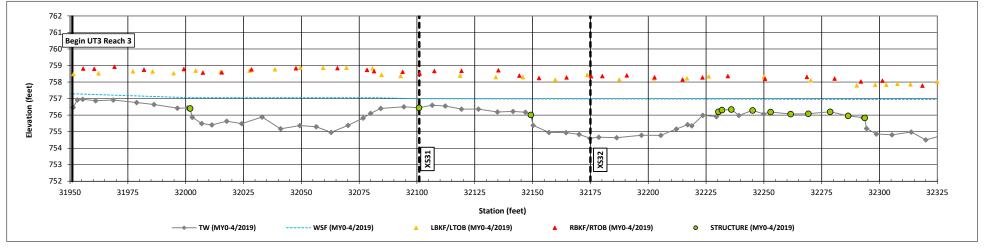


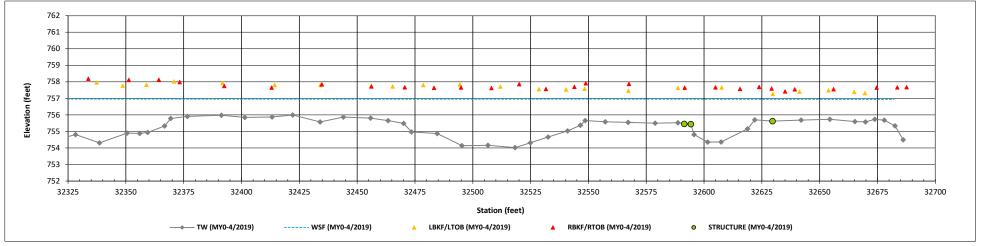


Lone Hickory Mitigation Site DMS Project No. 97135

Monitoring Year 0 - 2019

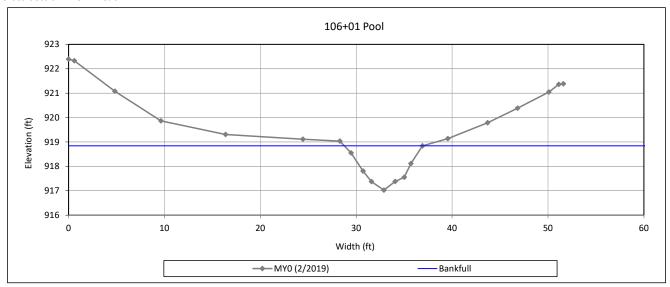
UT3 Reach 2 (STA 308+00 to 319+51)





Lone Hickory Mitigation Site DMS Project No. 97135

Monitoring Year 0 - 2019

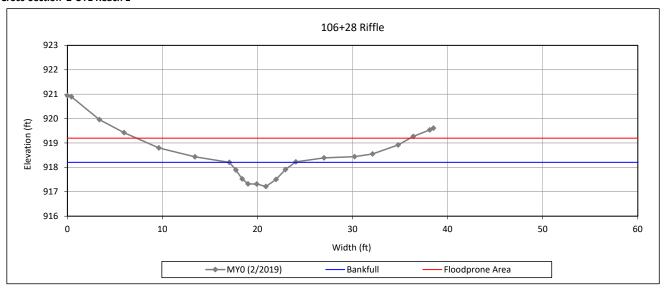

UT3 Reach 3 (STA 319+51 to 327+15)

Lone Hickory Mitigation Site NCDMS Project No. 97135 **Monitoring Year 0 - 2019**

Cross-Section 1-UT1 Reach 1

Bankfull Dimensions

- 8.5 x-section area (ft.sq.)
- 8.2 width (ft)
- 1.0 mean depth (ft)
- 1.8 max depth (ft)
- 9.0 wetted perimeter (ft)
- 0.9 hydraulic radius (ft)
- 7.8 width-depth ratio


Survey Date: 2/2019

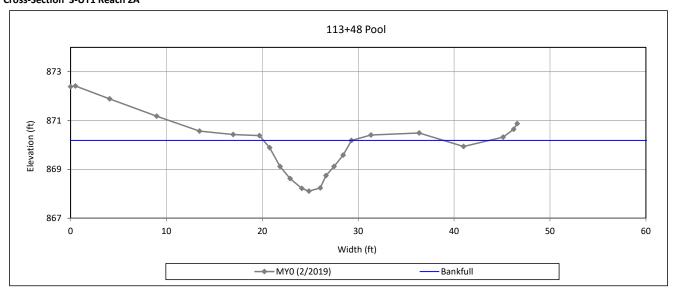
View Downstream

Lone Hickory Mitigation Site NCDMS Project No. 97135 Monitoring Year 0 - 2019

Cross-Section 2-UT1 Reach 1

Bankfull Dimensions

- x-section area (ft.sq.) 4.2
- 6.9 width (ft)
- 0.6 mean depth (ft)
- max depth (ft) 1.0
- 7.3 wetted perimeter (ft)
- 0.6 hydraulic radius (ft)
- 11.5 width-depth ratio
- W flood prone area (ft) 28.8
- 4.2 entrenchment ratio
- 1.0 low bank height ratio


Survey Date: 2/2019

View Downstream

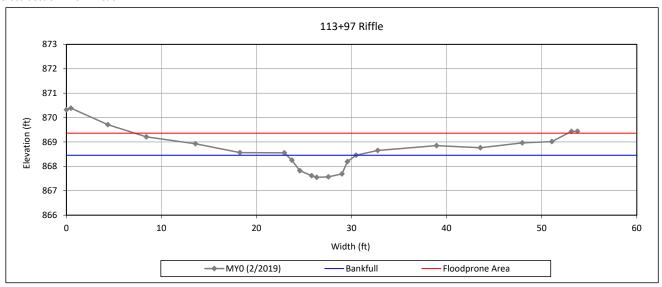
Lone Hickory Mitigation Site NCDMS Project No. 97135 **Monitoring Year 0 - 2019**

Cross-Section 3-UT1 Reach 2A

Bankfull Dimensions

- 11.4 x-section area (ft.sq.)
- 9.2 width (ft)
- 1.2 mean depth (ft)
- 2.1 max depth (ft)
- 10.2 wetted perimeter (ft)
- 1.1 hydraulic radius (ft)
- 7.4 width-depth ratio

Survey Date: 2/2019



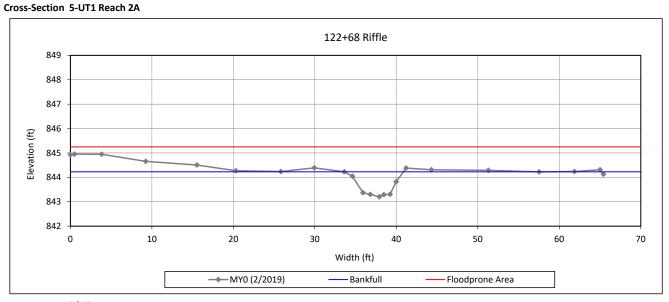
View Downstream

Lone Hickory Mitigation Site NCDMS Project No. 97135

Monitoring Year 0 - 2019

Cross-Section 4-UT1 Reach 2A

Bankfull Dimensions


- 4.5 x-section area (ft.sq.)
- 7.3 width (ft)
- 0.6 mean depth (ft)
- 0.9 max depth (ft)
- 7.7 wetted perimeter (ft)
- 0.6 hydraulic radius (ft)
- 11.8 width-depth ratio
- 45.6 W flood prone area (ft)
- 6.3 entrenchment ratio
- 1.0 low bank height ratio

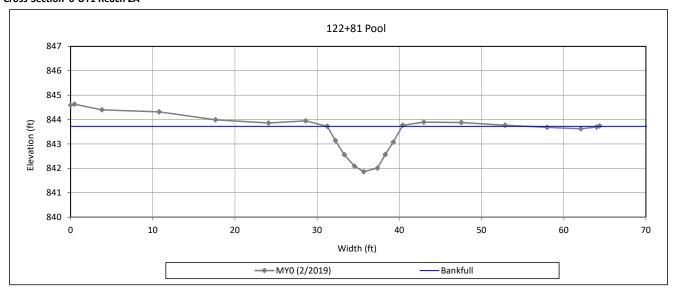
Survey Date: 2/2019

View Downstream

Lone Hickory Mitigation Site NCDMS Project No. 97135 Monitoring Year 0 - 2019

Bankfull Dimensions

- x-section area (ft.sq.) 4.6
- 7.3 width (ft)
- 0.6 mean depth (ft)
- max depth (ft) 1.0
- 7.7 wetted perimeter (ft)
- 0.6 hydraulic radius (ft)
- 11.5 width-depth ratio
- W flood prone area (ft) 65.4
- 9.0 entrenchment ratio
- 1.0 low bank height ratio


Survey Date: 2/2019

View Downstream

Lone Hickory Mitigation Site NCDMS Project No. 97135 **Monitoring Year 0 - 2019**

Cross-Section 6-UT1 Reach 2A

Bankfull Dimensions

10.5 x-section area (ft.sq.)

9.1 width (ft)

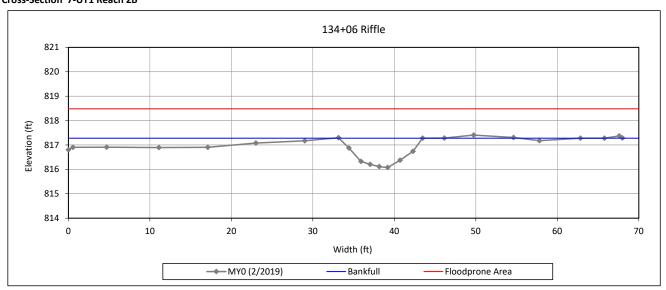
1.2 mean depth (ft)

1.9 max depth (ft)

10.0 wetted perimeter (ft)

1.1 hydraulic radius (ft)

7.9 width-depth ratio


Survey Date: 2/2019

View Downstream

Lone Hickory Mitigation Site NCDMS Project No. 97135 **Monitoring Year 0 - 2019**

Cross-Section 7-UT1 Reach 2B

Bankfull Dimensions

7.9 x-section area (ft.sq.)

10.3 width (ft)

0.8 mean depth (ft)

1.2 max depth (ft)

10.6 wetted perimeter (ft)

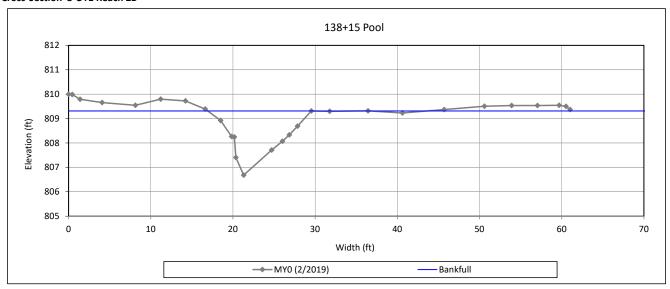
0.7 hydraulic radius (ft)

13.3 width-depth ratio

68.0 W flood prone area (ft)

6.6 entrenchment ratio

1.0 low bank height ratio


Survey Date: 2/2019

View Downstream

Lone Hickory Mitigation Site NCDMS Project No. 97135 **Monitoring Year 0 - 2019**

Cross-Section 8-UT1 Reach 2B

Bankfull Dimensions

15.4 x-section area (ft.sq.)

12.6 width (ft)

1.2 mean depth (ft)

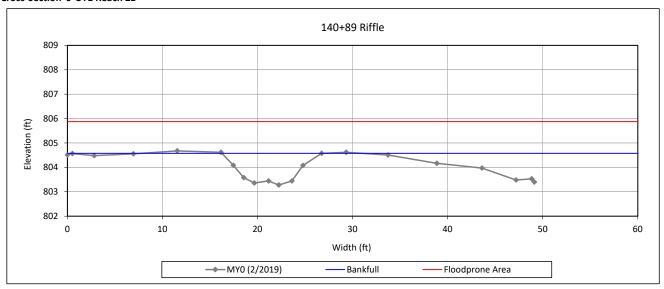
2.6 max depth (ft)

14.1 wetted perimeter (ft)

1.1 hydraulic radius (ft)

10.3 width-depth ratio

Survey Date: 2/2019



View Downstream

Lone Hickory Mitigation Site NCDMS Project No. 97135 **Monitoring Year 0 - 2019**

ŭ

Cross-Section 9-UT1 Reach 2B

Bankfull Dimensions

8.5 x-section area (ft.sq.)

10.5 width (ft)

0.8 mean depth (ft)

1.3 max depth (ft)

11.0 wetted perimeter (ft)

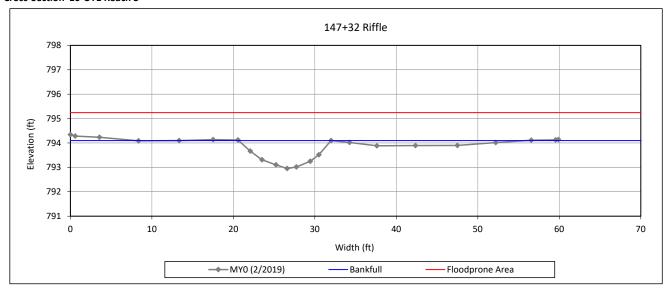
0.8 hydraulic radius (ft)

12.9 width-depth ratio

49.1 W flood prone area (ft)

4.7 entrenchment ratio

1.0 low bank height ratio


Survey Date: 2/2019

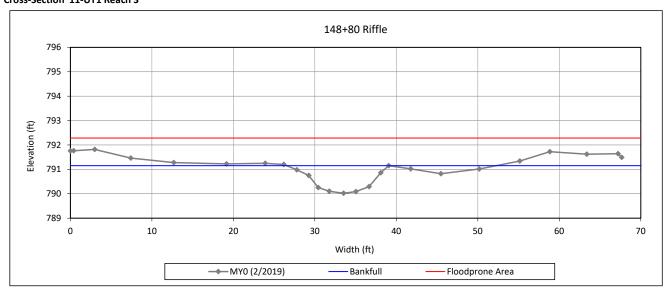
View Downstream

Lone Hickory Mitigation Site NCDMS Project No. 97135 **Monitoring Year 0 - 2019**

Cross-Section 10-UT1 Reach 3

Bankfull Dimensions

- 8.3 x-section area (ft.sq.)
- 11.3 width (ft)
- 0.7 mean depth (ft)
- 1.1 max depth (ft)
- 11.6 wetted perimeter (ft)
- 0.7 hydraulic radius (ft)
- 15.5 width-depth ratio
- 59.9 W flood prone area (ft)
- 5.3 entrenchment ratio
- 1.0 low bank height ratio


Survey Date: 2/2019

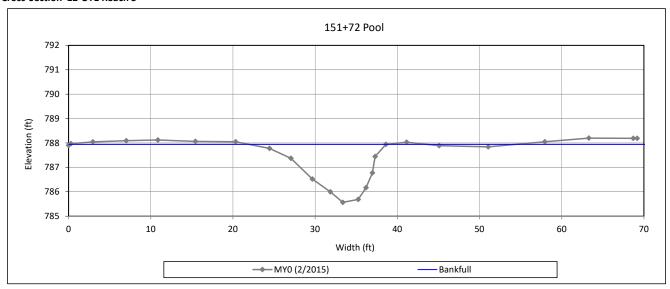
View Downstream

Lone Hickory Mitigation Site NCDMS Project No. 97135 Monitoring Year 0 - 2019

Cross-Section 11-UT1 Reach 3

Bankfull Dimensions

- x-section area (ft.sq.) 8.7
- 12.5 width (ft)
- 0.7 mean depth (ft)
- max depth (ft) 1.1
- 12.8 wetted perimeter (ft)
- 0.7 hydraulic radius (ft)
- 18.0 width-depth ratio
- 67.7 W flood prone area (ft)
- 5.4 entrenchment ratio
- 1.0 low bank height ratio


Survey Date: 2/2019

View Downstream

Lone Hickory Mitigation Site NCDMS Project No. 97135 **Monitoring Year 0 - 2019**

Cross-Section 12-UT1 Reach 3

Bankfull Dimensions

18.7 x-section area (ft.sq.)

16.7 width (ft)

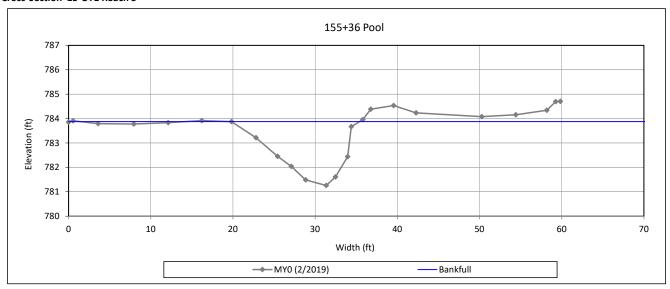
1.1 mean depth (ft)

2.4 max depth (ft)

17.8 wetted perimeter (ft)

1.1 hydraulic radius (ft)

14.8 width-depth ratio


Survey Date: 2/2014

View Downstream

Lone Hickory Mitigation Site NCDMS Project No. 97135 **Monitoring Year 0 - 2019**

Cross-Section 13-UT1 Reach 3

Bankfull Dimensions

22.4 x-section area (ft.sq.)

15.6 width (ft)

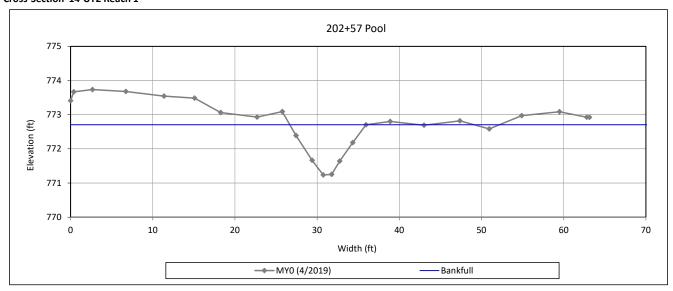
1.4 mean depth (ft)

2.6 max depth (ft)

17.1 wetted perimeter (ft)

1.3 hydraulic radius (ft)

10.9 width-depth ratio


Survey Date: 2/2019

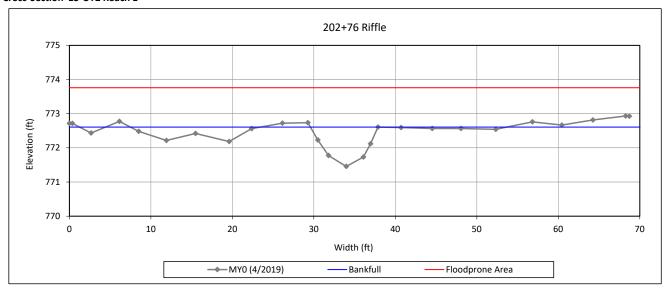
View Downstream

Lone Hickory Mitigation Site NCDMS Project No. 97135 **Monitoring Year 0 - 2019**

Cross-Section 14-UT2 Reach 1

Bankfull Dimensions

- 7.6 x-section area (ft.sq.)
- 9.3 width (ft)
- 0.8 mean depth (ft)
- 1.5 max depth (ft)
- 9.8 wetted perimeter (ft)
- 0.8 hydraulic radius (ft)
- 11.4 width-depth ratio

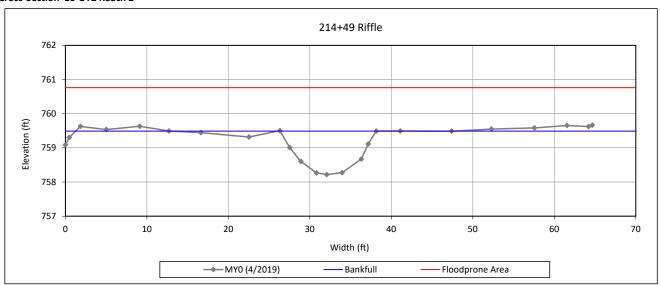

Survey Date: 4/2019

View Downstream

Lone Hickory Mitigation Site NCDMS Project No. 97135 Monitoring Year 0 - 2019

Cross-Section 15-UT2 Reach 1

Bankfull Dimensions


- x-section area (ft.sq.) 6.1
- width (ft) 8.3
- 0.7 mean depth (ft)
- max depth (ft) 1.2
- 8.7 wetted perimeter (ft)
- 0.7 hydraulic radius (ft)
- 11.3 width-depth ratio
- W flood prone area (ft) 68.7
- 8.3 entrenchment ratio
- 1.0 low bank height ratio
- Survey Date: 4/2019

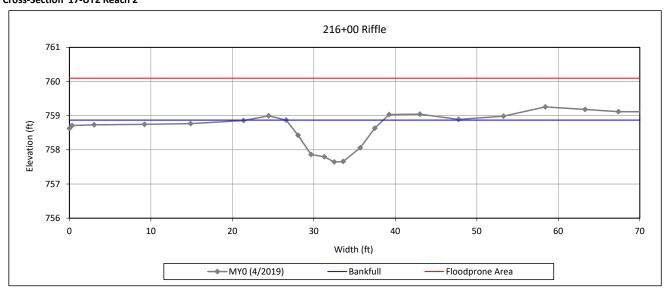
View Downstream

Lone Hickory Mitigation Site NCDMS Project No. 97135 **Monitoring Year 0 - 2019**

Cross-Section 16-UT2 Reach 2

Bankfull Dimensions

- 10.2 x-section area (ft.sq.)
- 11.8 width (ft)
- 0.9 mean depth (ft)
- 1.3 max depth (ft)
- 12.2 wetted perimeter (ft)
- 0.8 hydraulic radius (ft)
- 13.6 width-depth ratio
- 64.7 W flood prone area (ft)
- 5.5 entrenchment ratio
- 1.0 low bank height ratio


Survey Date: 4/2019

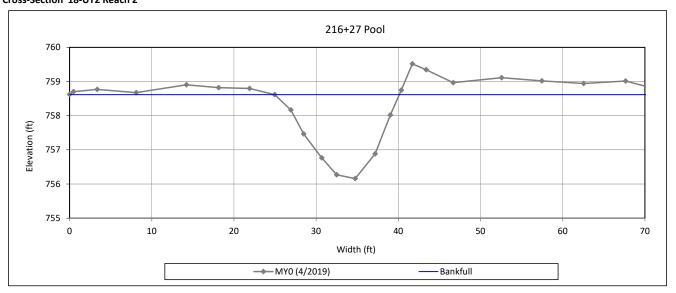
View Downstream

Lone Hickory Mitigation Site NCDMS Project No. 97135 Monitoring Year 0 - 2019

Cross-Section 17-UT2 Reach 2

Bankfull Dimensions

- x-section area (ft.sq.) 9.1
- 11.9 width (ft)
- 0.8 mean depth (ft)
- max depth (ft) 1.2
- 12.2 wetted perimeter (ft)
- 0.7 hydraulic radius (ft)
- 15.6 width-depth ratio
- W flood prone area (ft) 72.2
- 6.1
- entrenchment ratio
- 1.0 low bank height ratio


Survey Date: 4/2019

View Downstream

Lone Hickory Mitigation Site NCDMS Project No. 97135 **Monitoring Year 0 - 2019**

Cross-Section 18-UT2 Reach 2

Bankfull Dimensions

21.8 x-section area (ft.sq.)

15.2 width (ft)

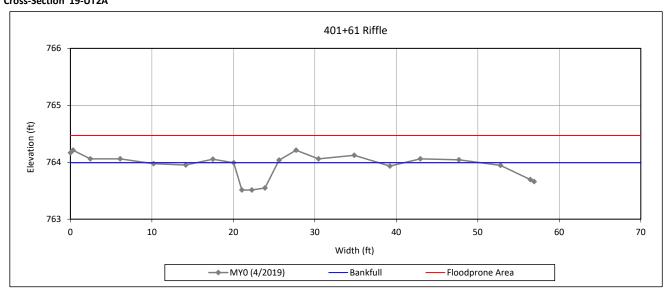
1.4 mean depth (ft)

2.5 max depth (ft)

16.1 wetted perimeter (ft)

1.3 hydraulic radius (ft)

10.6 width-depth ratio


Survey Date: 4/2019

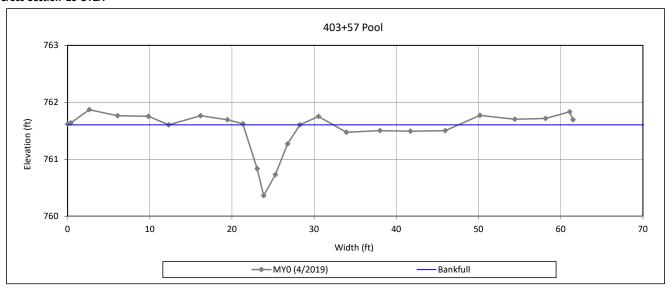
View Downstream

Lone Hickory Mitigation Site NCDMS Project No. 97135 Monitoring Year 0 - 2019

Cross-Section 19-UT2A

Bankfull Dimensions

- x-section area (ft.sq.) 1.9
- 5.4 width (ft)
- 0.4 mean depth (ft)
- 0.5 max depth (ft)
- wetted perimeter (ft) 5.6
- 0.3 hydraulic radius (ft)
- 15.2 width-depth ratio
- W flood prone area (ft) 56.9
- 10.5 entrenchment ratio
- 1.0 low bank height ratio


Survey Date: 4/2019

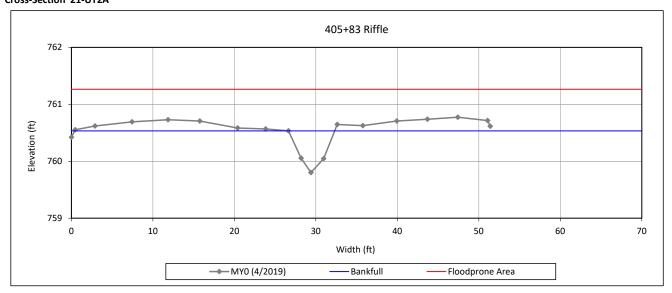
View Downstream

Lone Hickory Mitigation Site NCDMS Project No. 97135 **Monitoring Year 0 - 2019**

Cross-Section 20-UT2A

Bankfull Dimensions

- 4.1 x-section area (ft.sq.)
- 6.9 width (ft)
- 0.6 mean depth (ft)
- 1.2 max depth (ft)
- 7.4 wetted perimeter (ft)
- 0.6 hydraulic radius (ft)
- 11.6 width-depth ratio


Survey Date: 4/2019

View Downstream

Lone Hickory Mitigation Site NCDMS Project No. 97135 **Monitoring Year 0 - 2019**

Cross-Section 21-UT2A

Bankfull Dimensions

- 2.4 x-section area (ft.sq.)
- 5.7 width (ft)
- 0.4 mean depth (ft)
- 0.7 max depth (ft)
- 5.9 wetted perimeter (ft)
- 0.4 hydraulic radius (ft)
- 13.6 width-depth ratio
- 51.4 W flood prone area (ft)
- 9.0 entrenchment ratio
- 1.0 low bank height ratio

Survey Date: 4/2019

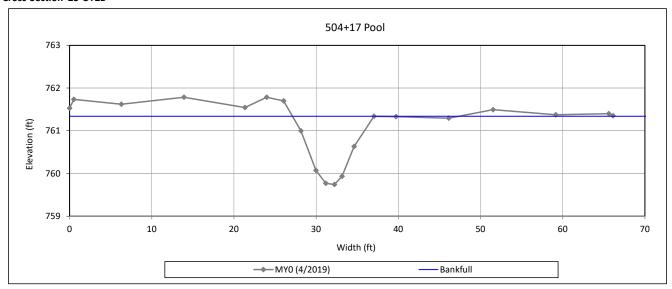
View Downstream

Lone Hickory Mitigation Site NCDMS Project No. 97135 **Monitoring Year 0 - 2019**

Cross-Section 22-UT2A

Bankfull Dimensions

- 4.3 x-section area (ft.sq.)
- 7.2 width (ft)
- 0.6 mean depth (ft)
- 1.1 max depth (ft)
- 7.6 wetted perimeter (ft)
- 0.6 hydraulic radius (ft)
- 12.1 width-depth ratio


Survey Date: 4/2019

View Downstream

Lone Hickory Mitigation Site NCDMS Project No. 97135 **Monitoring Year 0 - 2019**

Cross-Section 23-UT2B

Bankfull Dimensions

8.8 x-section area (ft.sq.)

9.9 width (ft)

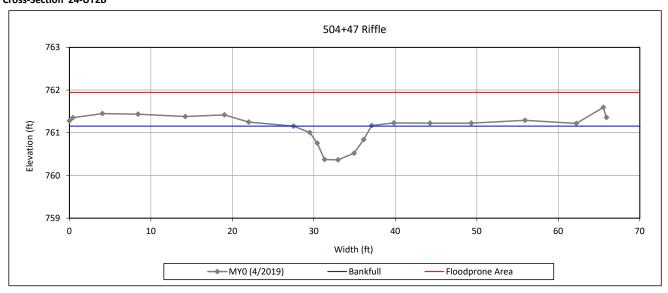
0.9 mean depth (ft)

1.6 max depth (ft)

10.5 wetted perimeter (ft)

0.8 hydraulic radius (ft)

11.2 width-depth ratio


Survey Date: 4/2019

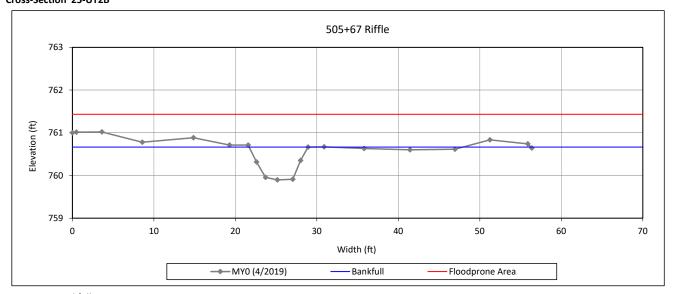
View Downstream

Lone Hickory Mitigation Site NCDMS Project No. 97135 Monitoring Year 0 - 2019

Cross-Section 24-UT2B

Bankfull Dimensions

- x-section area (ft.sq.) 4.3
- 9.6 width (ft)
- 0.5 mean depth (ft)
- 0.8 max depth (ft)
- wetted perimeter (ft) 9.8
- 0.4 hydraulic radius (ft)
- 21.1 width-depth ratio
- 65.9 W flood prone area (ft)
- 6.9 entrenchment ratio
- 1.0 low bank height ratio

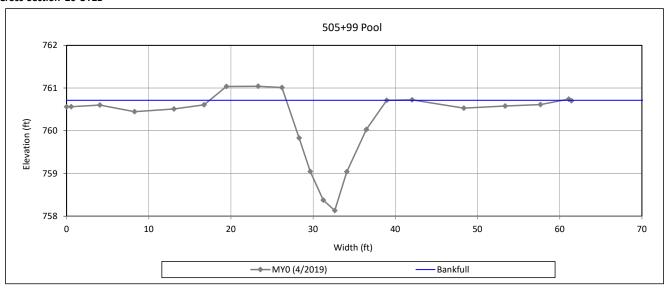

Survey Date: 4/2019

View Downstream

Lone Hickory Mitigation Site NCDMS Project No. 97135 **Monitoring Year 0 - 2019**

Cross-Section 25-UT2B

Bankfull Dimensions


- 3.9 x-section area (ft.sq.)
- 7.2 width (ft)
- 0.5 mean depth (ft)
- 0.8 max depth (ft)
- 7.5 wetted perimeter (ft)
- 0.5 hydraulic radius (ft)
- 13.4 width-depth ratio
- 56.4 W flood prone area (ft)
- 7.8 entrenchment ratio
- 1.0 low bank height ratio
- Survey Date: 4/2019

View Downstream

Lone Hickory Mitigation Site NCDMS Project No. 97135 **Monitoring Year 0 - 2019**

Cross-Section 26-UT2B

Bankfull Dimensions

15.8 x-section area (ft.sq.)

12.2 width (ft)

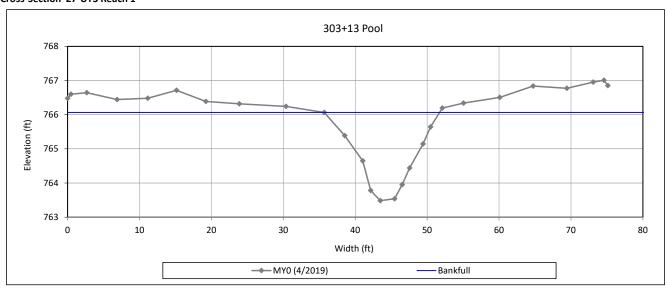
1.3 mean depth (ft)

2.6 max depth (ft)

13.4 wetted perimeter (ft)

1.2 hydraulic radius (ft)

9.4 width-depth ratio


Survey Date: 4/2019

View Downstream

Lone Hickory Mitigation Site NCDMS Project No. 97135 **Monitoring Year 0 - 2019**

Cross-Section 27-UT3 Reach 1

Bankfull Dimensions

21.7 x-section area (ft.sq.)

16.0 width (ft)

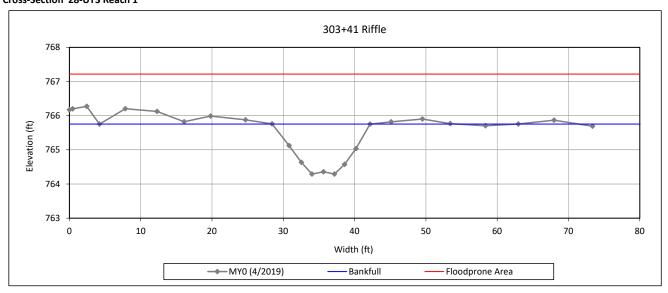
1.4 mean depth (ft)

2.6 max depth (ft)

17.1 wetted perimeter (ft)

1.3 hydraulic radius (ft)

11.9 width-depth ratio


Survey Date: 4/2019

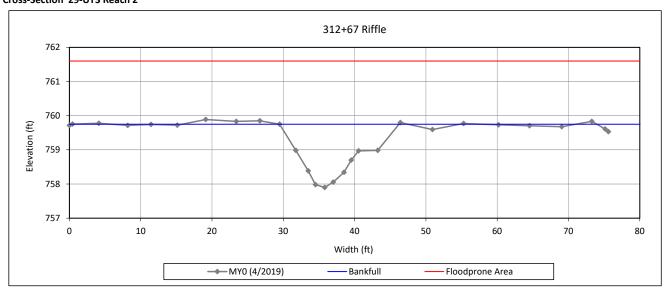
View Downstream

Lone Hickory Mitigation Site NCDMS Project No. 97135 Monitoring Year 0 - 2019

Cross-Section 28-UT3 Reach 1

Bankfull Dimensions

- x-section area (ft.sq.) 12.8
- width (ft) 13.7
- 0.9 mean depth (ft)
- 1.5 max depth (ft)
- wetted perimeter (ft) 14.1
- 0.9 hydraulic radius (ft)
- 14.7 width-depth ratio
- W flood prone area (ft) 73.4
- 5.3
- entrenchment ratio
- 1.0 low bank height ratio


Survey Date: 4/2019

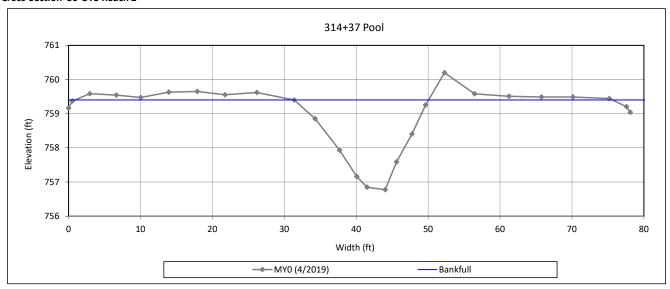
View Downstream

Lone Hickory Mitigation Site NCDMS Project No. 97135 **Monitoring Year 0 - 2019**

Cross-Section 29-UT3 Reach 2

Bankfull Dimensions

- 16.5 x-section area (ft.sq.)
- 16.7 width (ft)
- 1.0 mean depth (ft)
- 1.9 max depth (ft)
- 17.3 wetted perimeter (ft)
- 1.0 hydraulic radius (ft)
- 17.0 width-depth ratio
- 75.6 W flood prone area (ft)
- 4.5 entrenchment ratio
- 1.0 low bank height ratio


Survey Date: 4/2019

View Downstream

Lone Hickory Mitigation Site NCDMS Project No. 97135 **Monitoring Year 0 - 2019**

Cross-Section 30-UT3 Reach 2

Bankfull Dimensions

26.3 x-section area (ft.sq.)

18.7 width (ft)

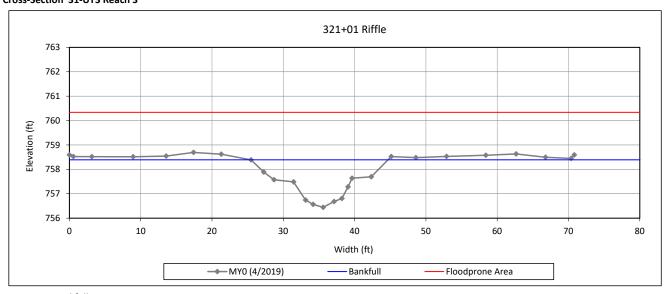
1.4 mean depth (ft)

2.6 max depth (ft)

19.6 wetted perimeter (ft)

1.3 hydraulic radius (ft)

13.3 width-depth ratio


Survey Date: 4/2019

View Downstream

Lone Hickory Mitigation Site NCDMS Project No. 97135 Monitoring Year 0 - 2019

Cross-Section 31-UT3 Reach 3

Bankfull Dimensions

x-section area (ft.sq.) 19.5

width (ft) 19.2

1.0 mean depth (ft)

1.9 max depth (ft)

wetted perimeter (ft) 19.8

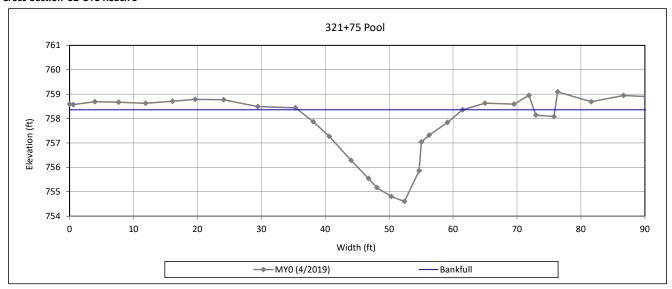
1.0 hydraulic radius (ft)

19.0 width-depth ratio

W flood prone area (ft) 70.8

3.7 entrenchment ratio

1.0 low bank height ratio


Survey Date: 4/2019

View Downstream

Lone Hickory Mitigation Site NCDMS Project No. 97135 **Monitoring Year 0 - 2019**

Cross-Section 32-UT3 Reach 3

Bankfull Dimensions

45.8 x-section area (ft.sq.)

25.8 width (ft)

1.8 mean depth (ft)

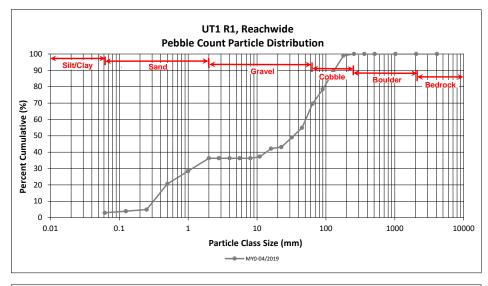
3.8 max depth (ft)

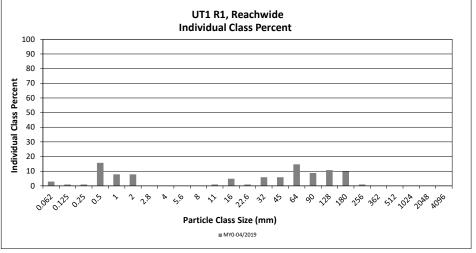
27.5 wetted perimeter (ft)

1.7 hydraulic radius (ft)

14.5 width-depth ratio

Survey Date: 4/2019

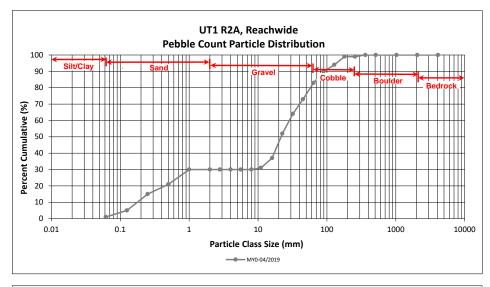

View Downstream

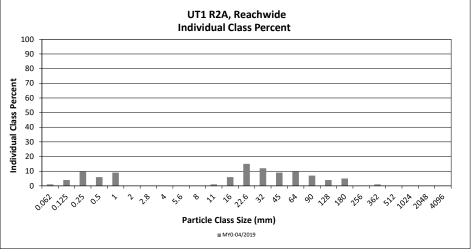

Lone Hickory Mitigation Site DMS Project No. 97135 **Monitoring Year 0 - 2019**

UT1 R1, Reachwide

Particle Class		Diame	ter (mm)	Pa	rticle Co	unt	Reach Summary	
		min	max	Riffle	Pool	Total	Class Percentage	Percent Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	1	2	3	3	3
	Very fine	0.062	0.125		1	1	1	4
	Fine	0.125	0.250		1	1	1	5
SAND	Medium	0.25	0.50	1	15	16	16	21
Sr.	Coarse	0.5	1.0	1	7	8	8	28
	Very Coarse	1.0	2.0	1	7	8	8	36
	Very Fine	2.0	2.8					36
	Very Fine	2.8	4.0					36
	Fine	4.0	5.6					36
	Fine	5.6	8.0					36
GRAVEL	Medium	8.0	11.0		1	1	1	37
GRAN	Medium	11.0	16.0	3	2	5	5	42
	Coarse	16.0	22.6	1		1	1	43
	Coarse	22.6	32	3	3	6	6	49
	Very Coarse	32	45	4	2	6	6	55
	Very Coarse	45	64	13	2	15	15	70
	Small	64	90	8	1	9	9	78
COBBLE	Small	90	128	7	4	11	11	89
COBY	Large	128	180	8	2	10	10	99
	Large	180	256		1	1	1	100
BOULDER	Small	256	362					100
	Small	362	512					100
	Medium	512	1024					100
	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
		·	Total	51	51	102	100	100

	Reachwide						
Channel materials (mm)							
D ₁₆ =	0.4						
D ₃₅ =	1.8						
D ₅₀ =	33.9						
D ₈₄ =	108.0						
D ₉₅ =	156.5						
D ₁₀₀ =	256.0						

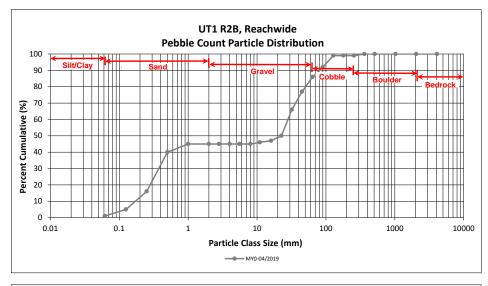


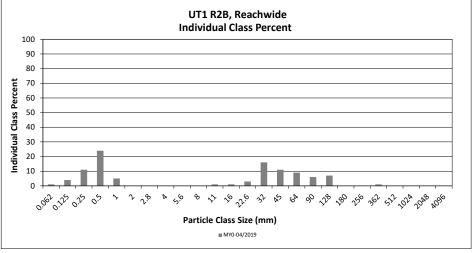

Lone Hickory Mitigation Site DMS Project No. 97135 **Monitoring Year 0 - 2019**

UT1 R2A, Reachwide

		Diameter (mm)		Pa	rticle Co	unt	Reach Summary	
Par	ticle Class						Class	Percent
		min	max	Riffle	Pool	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062		1	1	1	1
	Very fine	0.062	0.125		4	4	4	5
_	Fine	0.125	0.250		10	10	10	15
SAND	Medium	0.25	0.50		6	6	6	21
יכ	Coarse	0.5	1.0		9	9	9	30
	Very Coarse	1.0	2.0					30
	Very Fine	2.0	2.8					30
	Very Fine	2.8	4.0					30
	Fine	4.0	5.6					30
	Fine	5.6	8.0					30
GRAVEL	Medium	8.0	11.0	1		1	1	31
	Medium	11.0	16.0	3	3	6	6	37
	Coarse	16.0	22.6	11	4	15	15	52
	Coarse	22.6	32	9	3	12	12	64
	Very Coarse	32	45	6	3	9	9	73
	Very Coarse	45	64	8	2	10	10	83
	Small	64	90	6	1	7	7	90
COBBLE	Small	90	128	3	1	4	4	94
OBL	Large	128	180	2	3	5	5	99
	Large	180	256					99
BOULDER	Small	256	362	1		1	1	100
	Small	362	512					100
	Medium	512	1024					100
	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
•	.		Total	50	50	100	100	100

Reachwide						
Channel materials (mm)						
D ₁₆ =	0.3					
D ₃₅ =	14.1					
D ₅₀ =	21.6					
D ₈₄ =	67.2					
D ₉₅ =	137.0					
D ₁₀₀ =	362.0					

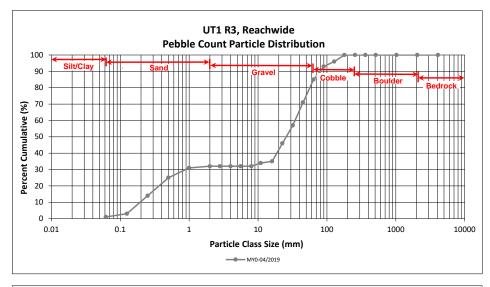


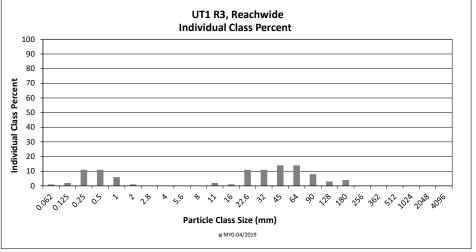

Lone Hickory Mitigation Site DMS Project No. 97135 **Monitoring Year 0 - 2019**

UT1 R2B, Reachwide

Particle Class		Diame	ter (mm)	Pa	rticle Co	unt	Reach Summary	
		min	max	Riffle	Pool	Total	Class Percentage	Percent Cumulative
CUT/CLAY	C:I+/CI	0.000		Killie			•	
SILT/CLAY	Silt/Clay		0.062		1	1	1	1
	Very fine	0.062	0.125		4	4	4	5
٠,0	Fine	0.125	0.250		11	11	11	16
SAND	Medium	0.25	0.50		24	24	24	40
,	Coarse	0.5	1.0		5	5	5	45
	Very Coarse	1.0	2.0					45
	Very Fine	2.0	2.8					45
	Very Fine	2.8	4.0					45
	Fine	4.0	5.6					45
	Fine	5.6	8.0					45
GRAVEL	Medium	8.0	11.0		1	1	1	46
	Medium	11.0	16.0	1		1	1	47
•	Coarse	16.0	22.6	3		3	3	50
	Coarse	22.6	32	13	3	16	16	66
	Very Coarse	32	45	10	1	11	11	77
	Very Coarse	45	64	9		9	9	86
	Small	64	90	6		6	6	92
ale	Small	90	128	7		7	7	99
COBBLE	Large	128	180					99
•	Large	180	256					99
	Small	256	362	1		1	1	100
BOULDER	Small	362	512					100
	Medium	512	1024					100
	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
	***		Total	50	50	100	100	100

Reachwide						
Channel materials (mm)						
D ₁₆ =	0.3					
D ₃₅ =	0.4					
D ₅₀ =	22.6					
D ₈₄ =	59.2					
D ₉₅ =	104.7					
D ₁₀₀ =	362.0					

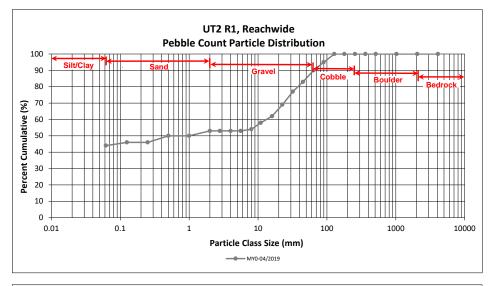


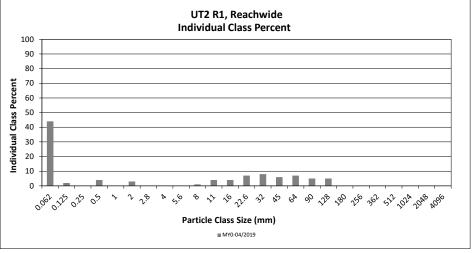

Lone Hickory Mitigation Site DMS Project No. 97135 **Monitoring Year 0 - 2019**

UT1 R3, Reachwide

		Diame	ter (mm)	Pa	rticle Co	unt	Reach Summary	
Par	ticle Class						Class	Percent
		min	max	Riffle	Pool	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062		1	1	1	1
	Very fine	0.062	0.125		2	2	2	3
	Fine	0.125	0.250		11	11	11	14
SAND	Medium	0.25	0.50		11	11	11	25
יכ	Coarse	0.5	1.0		6	6	6	31
	Very Coarse	1.0	2.0		1	1	1	32
	Very Fine	2.0	2.8					32
	Very Fine	2.8	4.0					32
	Fine	4.0	5.6					32
	Fine	5.6	8.0					32
yEL	Medium	8.0	11.0	1	1	2	2	34
GRAVEL	Medium	11.0	16.0		1	1	1	35
•	Coarse	16.0	22.6	5	6	11	11	46
	Coarse	22.6	32	4	7	11	11	57
	Very Coarse	32	45	12	2	14	14	71
	Very Coarse	45	64	13	1	14	14	85
	Small	64	90	8		8	8	93
COBBLE	Small	90	128	3		3	3	96
COEC	Large	128	180	4		4	4	100
-	Large	180	256					100
BOULDER	Small	256	362					100
	Small	362	512					100
	Medium	512	1024					100
	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
	-		Total	50	50	100	100	100

Reachwide						
Channel materials (mm)						
D ₁₆ =	0.3					
D ₃₅ =	16.0					
D ₅₀ =	25.6					
D ₈₄ =	62.4					
D ₉₅ =	113.8					
D ₁₀₀ =	180.0					

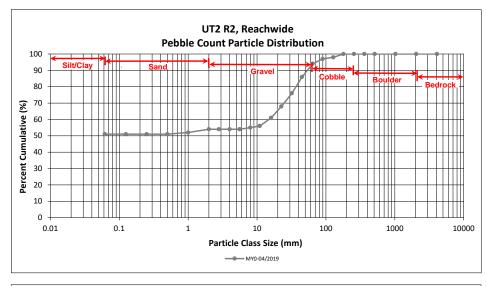


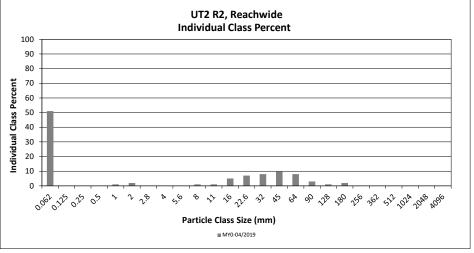

Lone Hickory Mitigation Site DMS Project No. 97135 **Monitoring Year 0 - 2019**

UT2 R1, Reachwide

		Diame	ter (mm)	Pa	rticle Co	unt	Reach Summary	
Par	ticle Class						Class	Percent
		min	max	Riffle	Pool	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062		44	44	44	44
	Very fine	0.062	0.125		2	2	2	46
_	Fine	0.125	0.250					46
SAND	Medium	0.25	0.50		4	4	4	50
יל	Coarse	0.5	1.0					50
	Very Coarse	1.0	2.0	3		3	3	53
	Very Fine	2.0	2.8					53
	Very Fine	2.8	4.0					53
	Fine	4.0	5.6					53
	Fine	5.6	8.0	1		1	1	54
JEL	Medium	8.0	11.0	4		4	4	58
GRAVEL	Medium	11.0	16.0	4		4	4	62
	Coarse	16.0	22.6	7		7	7	69
	Coarse	22.6	32	8		8	8	77
	Very Coarse	32	45	6		6	6	83
	Very Coarse	45	64	7		7	7	90
	Small	64	90	5		5	5	95
COBBLE	Small	90	128	5		5	5	100
COEL	Large	128	180					100
•	Large	180	256					100
BOULDER	Small	256	362					100
	Small	362	512					100
	Medium	512	1024					100
	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	50	50	100	100	100

Reachwide						
Channel materials (mm)						
D ₁₆ =	Silt/Clay					
D ₃₅ =	Silt/Clay					
D ₅₀ =	0.5					
D ₈₄ =	47.3					
D ₉₅ =	90.0					
D ₁₀₀ =	128.0					

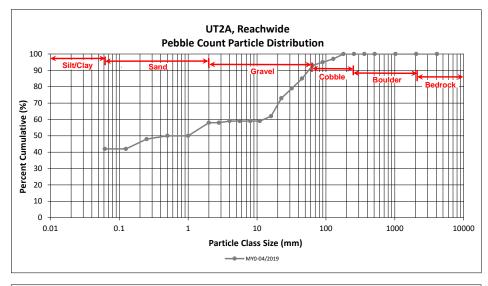


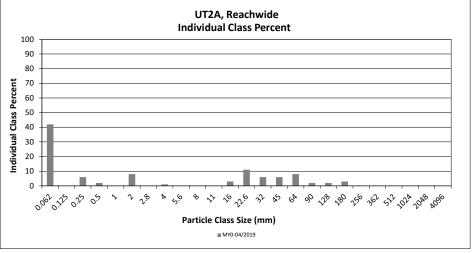

Lone Hickory Mitigation Site DMS Project No. 97135 **Monitoring Year 0 - 2019**

UT2 R2, Reachwide

		Diameter (mm)		Pa	rticle Co	unt	Reach Summary	
Particle Class							Class	Percent
		min	max	Riffle	Pool	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	1	50	51	51	51
	Very fine	0.062	0.125					51
_	Fine	0.125	0.250					51
SAND	Medium	0.25	0.50					51
יכ	Coarse	0.5	1.0	1		1	1	52
	Very Coarse	1.0	2.0	2		2	2	54
	Very Fine	2.0	2.8					54
	Very Fine	2.8	4.0					54
	Fine	4.0	5.6					54
	Fine	5.6	8.0	1		1	1	55
GRAVEL	Medium	8.0	11.0	1		1	1	56
	Medium	11.0	16.0	5		5	5	61
	Coarse	16.0	22.6	7		7	7	68
	Coarse	22.6	32	8		8	8	76
	Very Coarse	32	45	10		10	10	86
	Very Coarse	45	64	8		8	8	94
	Small	64	90	3		3	3	97
COBBLE	Small	90	128	1		1	1	98
COBL	Large	128	180	2		2	2	100
•	Large	180	256					100
BOUIDER	Small	256	362					100
	Small	362	512					100
	Medium	512	1024					100
	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
•	·		Total	50	50	100	100	100

Reachwide						
Channel materials (mm)						
D ₁₆ =	Silt/Clay					
D ₃₅ =	Silt/Clay					
D ₅₀ =	Silt/Clay					
D ₈₄ =	42.0					
D ₉₅ =	71.7					
D ₁₀₀ =	180.0					

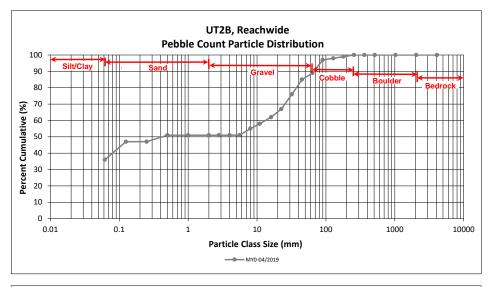


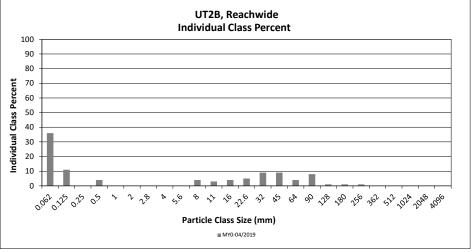

Lone Hickory Mitigation Site DMS Project No. 97135 **Monitoring Year 0 - 2019**

UT2A, Reachwide

			ter (mm)	Pa	rticle Co	unt	Reach Summary	
Par	ticle Class						Class	Percent
		min	max	Riffle	Pool	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062		42	42	42	42
	Very fine	0.062	0.125					42
_	Fine	0.125	0.250		6	6	6	48
SAND	Medium	0.25	0.50		2	2	2	50
יכ	Coarse	0.5	1.0					50
	Very Coarse	1.0	2.0	8		8	8	58
	Very Fine	2.0	2.8					58
	Very Fine	2.8	4.0	1		1	1	59
	Fine	4.0	5.6					59
	Fine	5.6	8.0					59
GRAVEL	Medium	8.0	11.0					59
GRAN	Medium	11.0	16.0	3		3	3	62
•	Coarse	16.0	22.6	11		11	11	73
	Coarse	22.6	32	6		6	6	79
	Very Coarse	32	45	6		6	6	85
	Very Coarse	45	64	8		8	8	93
	Small	64	90	2		2	2	95
COBBLE	Small	90	128	2		2	2	97
COBR	Large	128	180	3		3	3	100
•	Large	180	256					100
	Small	256	362					100
BOULDER	Small	362	512					100
	Medium	512	1024					100
	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	50	50	100	100	100

Reachwide				
Channel materials (mm)				
D ₁₆ =	Silt/Clay			
D ₃₅ =	Silt/Clay			
D ₅₀ =	0.5			
D ₈₄ =	42.5			
D ₉₅ =	90.0			
D ₁₀₀ =	180.0			

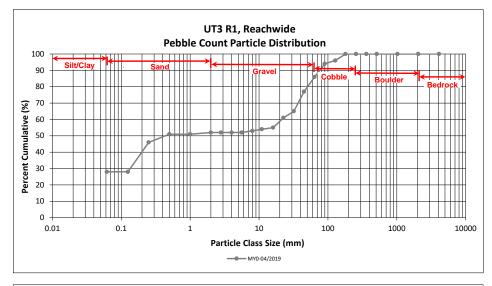


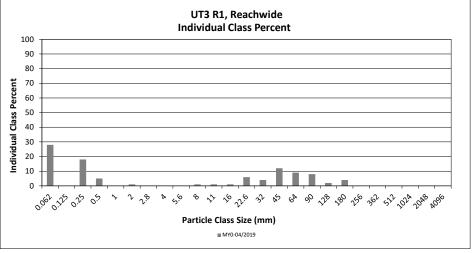

Lone Hickory Mitigation Site DMS Project No. 97135 **Monitoring Year 0 - 2019**

UT2B, Reachwide

			ter (mm)	Pa	rticle Co	unt	Reach Summary	
Par	ticle Class						Class	Percent
		min	max	Riffle	Pool	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	1	35	36	36	36
	Very fine	0.062	0.125		11	11	11	47
_	Fine	0.125	0.250					47
SAND	Medium	0.25	0.50		4	4	4	51
'ל	Coarse	0.5	1.0					51
	Very Coarse	1.0	2.0					51
	Very Fine	2.0	2.8					51
	Very Fine	2.8	4.0					51
	Fine	4.0	5.6					51
	Fine	5.6	8.0	4		4	4	55
GRAVEL	Medium	8.0	11.0	3		3	3	58
GRAN	Medium	11.0	16.0	4		4	4	62
•	Coarse	16.0	22.6	5		5	5	67
	Coarse	22.6	32	9		9	9	76
	Very Coarse	32	45	9		9	9	85
	Very Coarse	45	64	4		4	4	89
	Small	64	90	8		8	8	97
COBBLE	Small	90	128	1		1	1	98
COBR	Large	128	180	1		1	1	99
•	Large	180	256	1		1	1	100
	Small	256	362					100
BOULDER	Small	362	512					100
	Medium	512	1024					100
	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	50	50	100	100	100

	Reachwide				
Channel materials (mm)					
D ₁₆ =	Silt/Clay				
D ₃₅ =	Silt/Clay				
D ₅₀ =	0.4				
D ₈₄ =	43.3				
D ₉₅ =	82.6				
D ₁₀₀ =	256.0				

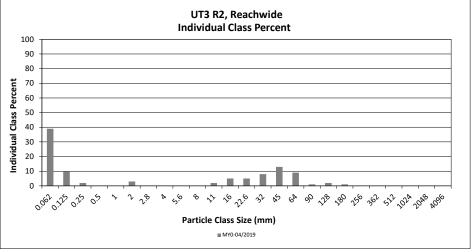



Lone Hickory Mitigation Site DMS Project No. 97135 **Monitoring Year 0 - 2019**

UT3 R1, Reachwide

		Diame	ter (mm)	Pa	rticle Co	unt	Reach S	ummary
Par	ticle Class						Class	Percent
	7/ 1	min	max	Riffle	Pool	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	2	26	28	28	28
	Very fine	0.062	0.125					28
_	Fine	0.125	0.250		18	18	18	46
SAND	Medium	0.25	0.50		5	5	5	51
٦'	Coarse	0.5	1.0					51
	Very Coarse	1.0	2.0	1		1	1	52
	Very Fine	2.0	2.8					52
	Very Fine	2.8	4.0					52
	Fine	4.0	5.6					52
	Fine	5.6	8.0		1	1	1	53
JEL	Medium	8.0	11.0	1		1	1	54
GRAVEL	Medium	11.0	16.0	1		1	1	55
•	Coarse	16.0	22.6	6		6	6	61
	Coarse	22.6	32	4		4	4	65
	Very Coarse	32	45	12		12	12	77
	Very Coarse	45	64	9		9	9	86
	Small	64	90	8		8	8	94
ale	Small	90	128	2		2	2	96
COBBLE	Large	128	180	4		4	4	100
•	Large	180	256					100
	Small	256	362					100
BOULDER	Small	362	512					100
	Medium	512	1024					100
	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
	-		Total	50	50	100	100	100

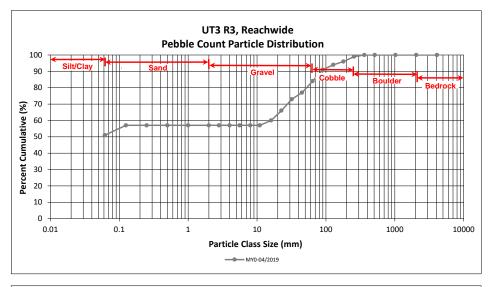
Reachwide				
Channel materials (mm)				
D ₁₆ =	Silt/Clay			
D ₃₅ =	0.2			
D ₅₀ =	0.4			
D ₈₄ =	59.2			
D ₉₅ =	107.3			
D ₁₀₀ =	180.0			

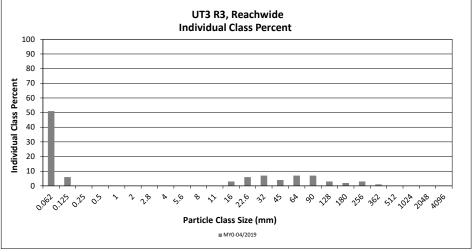

Lone Hickory Mitigation Site DMS Project No. 97135 **Monitoring Year 0 - 2019**

UT3 R2, Reachwide

		Diame	ter (mm)	Pa	rticle Co	unt	Reach Summary	
Par	ticle Class						Class	Percent
		min	max	Riffle	Pool	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	1	38	39	39	39
	Very fine	0.062	0.125		10	10	10	49
_	Fine	0.125	0.250		2	2	2	51
SAND	Medium	0.25	0.50					51
יל	Coarse	0.5	1.0					51
	Very Coarse	1.0	2.0	3		3	3	54
	Very Fine	2.0	2.8					54
	Very Fine	2.8	4.0					54
	Fine	4.0	5.6					54
	Fine	5.6	8.0					54
JEL	Medium	8.0	11.0	2		2	2	56
GRAVEL	Medium	11.0	16.0	5		5	5	61
	Coarse	16.0	22.6	5		5	5	66
	Coarse	22.6	32	8		8	8	74
	Very Coarse	32	45	13		13	13	87
	Very Coarse	45	64	9		9	9	96
	Small	64	90	1		1	1	97
ale	Small	90	128	2		2	2	99
COBBLE	Large	128	180	1		1	1	100
-	Large	180	256					100
	Small	256	362					100
.0 ^{ER}	Small	362	512					100
BOULDER	Medium	512	1024					100
	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	50	50	100	100	100

Reachwide				
Channel materials (mm)				
D ₁₆ =	Silt/Clay			
D ₃₅ =	Silt/Clay			
D ₅₀ =	0.2			
D ₈₄ =	41.6			
D ₉₅ =	61.5			
D ₁₀₀ =	180.0			

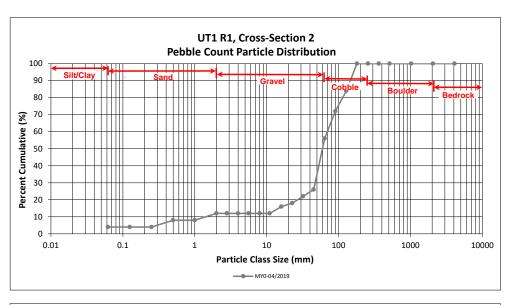


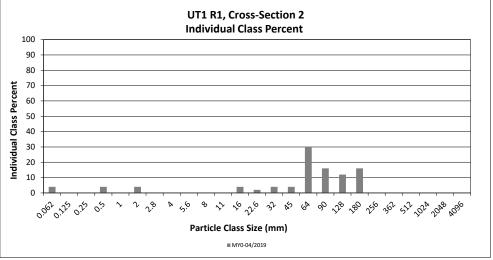

Lone Hickory Mitigation Site DMS Project No. 97135 **Monitoring Year 0 - 2019**

UT3 R3, Reachwide

		Diame	ter (mm)	Pa	rticle Co	unt	Reach S	Reach Summary		
Par	ticle Class						Class	Percent		
		min	max	Riffle	Pool	Total	Percentage	Cumulative		
SILT/CLAY	Silt/Clay	0.000	0.062	7	44	51	51	51		
	Very fine	0.062	0.125		6	6	6	57		
_	Fine	0.125	0.250					57		
SAND	Medium	0.25	0.50					57		
'ל	Coarse	0.5	1.0					57		
	Very Coarse	1.0	2.0					57		
	Very Fine	2.0	2.8					57		
	Very Fine	2.8	4.0					57		
	Fine	4.0	5.6					57		
	Fine	5.6	8.0					57		
JEL	Medium	8.0	11.0					57		
GRAVEL	Medium	11.0	16.0	3		3	3	60		
•	Coarse	16.0	22.6	6		6	6	66		
	Coarse	22.6	32	7		7	7	73		
	Very Coarse	32	45	4		4	4	77		
	Very Coarse	45	64	7		7	7	84		
	Small	64	90	7		7	7	91		
COBBLE	Small	90	128	3		3	3	94		
COBR	Large	128	180	2		2	2	96		
•	Large	180	256	3		3	3	99		
	Small	256	362	1		1	1	100		
BOULDER	Small	362	512					100		
	Medium	512	1024					100		
	Large/Very Large	1024	2048					100		
BEDROCK	Bedrock	2048	>2048					100		
	•		Total	50	50	100	100	100		

Reachwide				
Channel materials (mm)				
D ₁₆ =	Silt/Clay			
D ₃₅ =	Silt/Clay			
D ₅₀ =	Silt/Clay			
D ₈₄ =	64.0			
D ₉₅ =	151.8			
D ₁₀₀ =	362.0			

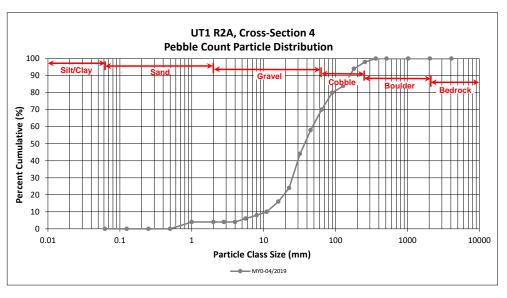


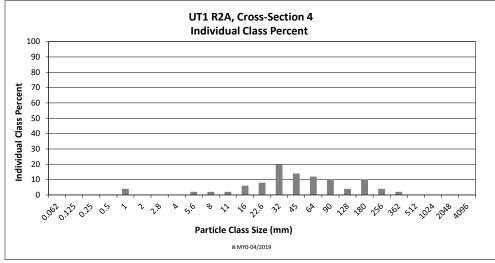

Lone Hickory Mitigation Site DMS Project No. 97135 **Monitoring Year 0 - 2019**

UT1 R1, Cross-Section 2

		Diame	ter (mm)	Riffle 100-	Summary		
Pai	rticle Class			Count	Class	Percent	
(400,000,000,000,000,000,000,000,000,000		min	max	count	Percentage	Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062	4	4	4	
	Very fine	0.062	0.125			4	
_	Fine	0.125	0.250			4	
SAND	Medium	0.25	0.50	4	4	8	
יל	Coarse	0.5	1.0			8	
	Very Coarse	1.0	2.0	4	4	12	
	Very Fine	2.0	2.8			12	
	Very Fine	2.8	4.0			12	
	Fine	4.0	5.6			12	
	Fine	5.6	8.0			12	
JEL	Medium	8.0	11.0			12	
GRAVEL	Medium	11.0	16.0	4	4	16	
	Coarse	16.0	22.6	2	2	18	
	Coarse	22.6	32	4	4	22	
	Very Coarse	32	45	4	4	26	
	Very Coarse	45	64	30	30	56	
	Small	64	90	16	16	72	
COBBLE	Small	90	128	12	12	84	
CORE	Large	128	180	16	16	100	
-	Large	180	256	<u>-</u>		100	
	Small	256	362			100	
BOULDER	Small	362	512	<u>-</u>		100	
	Medium	512	1024			100	
70	Large/Very Large	1024	2048			100	
BEDROCK	Bedrock	2048	>2048	<u> </u>		100	
			Total	100	100	100	

	Cross-Section 2				
Channel materials (mm)					
D ₁₆ =	16.0				
D ₃₅ =	50.0				
D ₅₀ =	59.6				
D ₈₄ =	128.0				
D ₉₅ =	161.8				
D ₁₀₀ =	180.0				

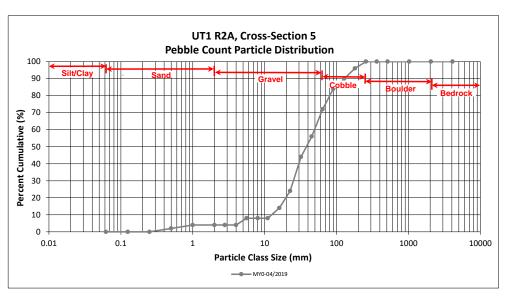

Lone Hickory Mitigation Site DMS Project No. 97135

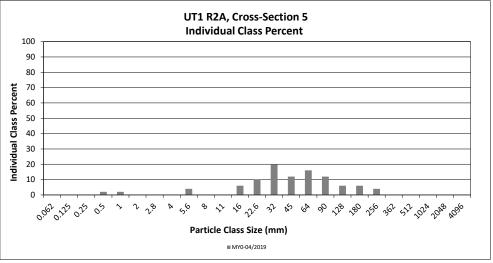

Monitoring Year 0 - 2019

UT1 R2A, Cross-Section 4

		Diame	ter (mm)	Riffle 100-	Summary	
Pai	Particle Class		max	Count	Class Percentage	Percent Cumulative
SILT/CLAY	Silt/Clay	min 0.000	0.062		rereentage	0
Í	Very fine	0.062	0.125			0
	Fine	0.125	0.250			0
SAND	Medium	0.25	0.50			0
Sr	Coarse	0.5	1.0	4	4	4
	Very Coarse	1.0	2.0			4
	Very Fine	2.0	2.8			4
	Very Fine	2.8	4.0			4
	Fine	4.0	5.6	2	2	6
	Fine	5.6	8.0	2	2	8
JEL	Medium	8.0	11.0	2	2	10
GRAVEL	Medium	11.0	16.0	6	6	16
	Coarse	16.0	22.6	8	8	24
	Coarse	22.6	32	20	20	44
	Very Coarse	32	45	14	14	58
	Very Coarse	45	64	12	12	70
	Small	64	90	10	10	80
COBBLE	Small	90	128	4	4	84
COBY	Large	128	180	10	10	94
-	Large	180	256	4	4	98
	Small	256	362	2	2	100
BOULDER	Small	362	512			100
	Medium	512	1024			100
	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	100	100	100

Cross-Section 4				
Channel materials (mm)				
D ₁₆ =	16.0			
D ₃₅ =	27.4			
D ₅₀ =	37.0			
D ₈₄ =	128.0			
D ₉₅ =	196.6			
D ₁₀₀ =	362.0			

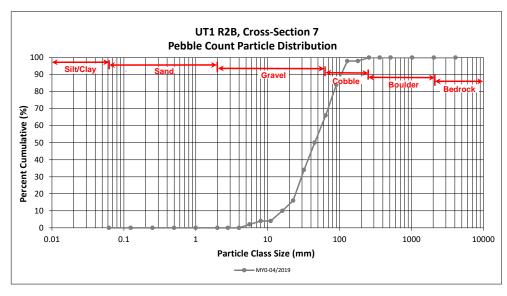


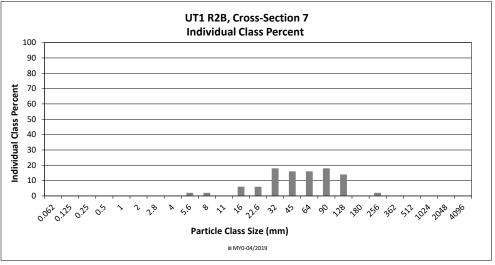

Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 0 - 2019

UT1 R2A, Cross-Section 5

Particle Class		Diameter (mm)		Riffle 100-	Summary	
		min	max	Count	Class	Percent Cumulative
CHT/CLAY	C:It/Class	0.000	0.062		Percentage	0
SILT/CLAY	Silt/Clay Very fine	0.062	0.062			0
	Fine	0.062	0.125			0
-10		†	1	2	2	2
SAND	Medium	0.25	0.50	2	•	
	Coarse	0.5	1.0	2	2	4
	Very Coarse	1.0	2.0			4
	Very Fine	2.0	2.8			4
	Very Fine	2.8	4.0			4
	Fine	4.0	5.6	4	4	8
	Fine	5.6	8.0			8
GRAVEL	Medium	8.0	11.0			8
	Medium	11.0	16.0	6	6	14
	Coarse	16.0	22.6	10	10	24
	Coarse	22.6	32	20	20	44
	Very Coarse	32	45	12	12	56
	Very Coarse	45	64	16	16	72
	Small	64	90	12	12	84
ale	Small	90	128	6	6	90
COBBLE	Large	128	180	6	6	96
•	Large	180	256	4	4	100
BOULDER	Small	256	362			100
	Small	362	512			100
	Medium	512	1024			100
	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
		•	Total	100	100	100

	Cross-Section 5				
Ch	Channel materials (mm)				
D ₁₆ =	17.1				
D ₃₅ =	27.4				
D ₅₀ =	37.9				
D ₈₄ =	90.0				
D ₉₅ =	170.1				
D ₁₀₀ =	256.0				

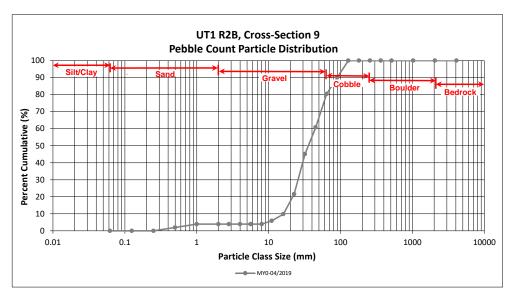


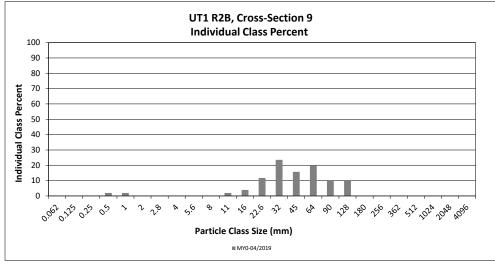

Lone Hickory Mitigation Site DMS Project No. 97135 **Monitoring Year 0 - 2019**

UT1 R2B, Cross-Section 7

Particle Class		Diame	ter (mm)	Riffle 100-	Summary	
		min	max	Count	Class Percentage	Percent Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062			0
	Very fine	0.062	0.125			0
	Fine	0.125	0.250			0
SAND	Medium	0.25	0.50			0
21	Coarse	0.5	1.0			0
	Very Coarse	1.0	2.0			0
	Very Fine	2.0	2.8			0
	Very Fine	2.8	4.0			0
	Fine	4.0	5.6	2	2	2
	Fine	5.6	8.0	2	2	4
, EL	Medium	8.0	11.0			4
GRAVEL	Medium	11.0	16.0	6	6	10
	Coarse	16.0	22.6	6	6	16
	Coarse	22.6	32	18	18	34
	Very Coarse	32	45	16	16	50
	Very Coarse	45	64	16	16	66
	Small	64	90	18	18	84
. QLE	Small	90	128	14	14	98
COBBLE	Large	128	180			98
-	Large	180	256	2	2	100
	Small	256	362	-		100
BOULDER	Small	362	512			100
	Medium	512	1024			100
	Large/Very Large	1024	2048	-		100
BEDROCK	Bedrock	2048	>2048			100
			Total	100	100	100

Cross-Section 7					
Ch	Channel materials (mm)				
D ₁₆ =	22.6				
D ₃₅ =	32.7				
D ₅₀ =	45.0				
D ₈₄ =	90.0				
D ₉₅ =	118.7				
D ₁₀₀ =	256.0				

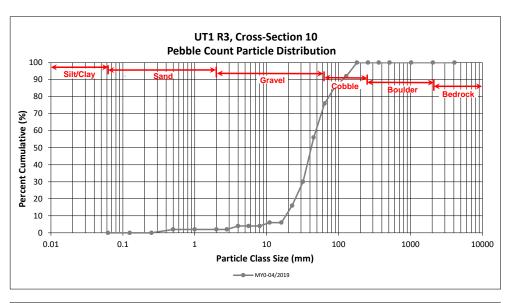

Lone Hickory Mitigation Site DMS Project No. 97135

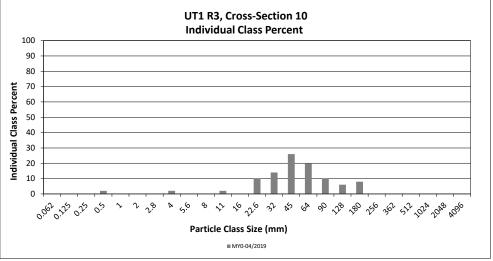

Monitoring Year 0 - 2019

UT1 R2B, Cross-Section 9

Particle Class		Diame	ter (mm)	Riffle 100-	Summary	
		min	max	Count	Class Percentage	Percent Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062			0
-	Very fine	0.062	0.125			0
	Fine	0.125	0.250			0
SAND	Medium	0.25	0.50	2	2	2
יל	Coarse	0.5	1.0	2	2	4
	Very Coarse	1.0	2.0			4
	Very Fine	2.0	2.8			4
	Very Fine	2.8	4.0			4
	Fine	4.0	5.6			4
	Fine	5.6	8.0			4
JEL	Medium	8.0	11.0	2	2	6
GRAVEL	Medium	11.0	16.0	4	4	10
· ·	Coarse	16.0	22.6	12	12	22
	Coarse	22.6	32	24	24	45
	Very Coarse	32	45	16	16	61
	Very Coarse	45	64	20	20	80
	Small	64	90	10	10	90
- RIE	Small	90	128	10	10	100
COBBLE	Large	128	180			100
	Large	180	256			100
	Small	256	362	·		100
BOULDER	Small	362	512			100
	Medium	512	1024			100
	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
•		<u> </u>	Total	102	100	100

	Cross-Section 9				
Ch	Channel materials (mm)				
D ₁₆ =	19.2				
D ₃₅ =	27.6				
D ₅₀ =	35.6				
D ₈₄ =	72.6				
D ₉₅ =	107.0				
D ₁₀₀ =	128.0				

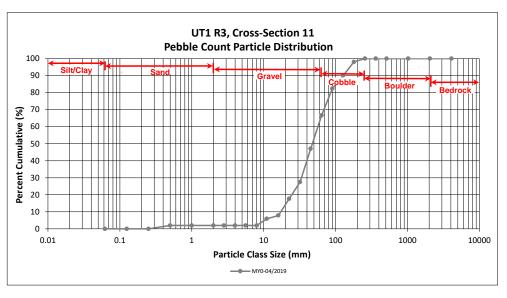


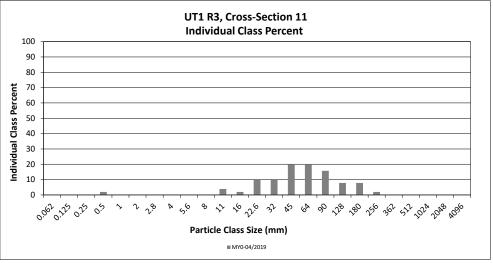

Lone Hickory Mitigation Site DMS Project No. 97135 **Monitoring Year 0 - 2019**

UT1 R3, Cross-Section 10

Particle Class		Diame	ter (mm)	Riffle 100-	Summary	
				Count	Class	Percent
		min	max		Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062			0
	Very fine	0.062	0.125			0
	Fine	0.125	0.250			0
SAND	Medium	0.25	0.50	2	2	2
ייכ	Coarse	0.5	1.0			2
	Very Coarse	1.0	2.0			2
	Very Fine	2.0	2.8			2
	Very Fine	2.8	4.0	2	2	4
	Fine	4.0	5.6			4
	Fine	5.6	8.0			4
JEL	Medium	8.0	11.0	2	2	6
GRAVEL	Medium	11.0	16.0			6
	Coarse	16.0	22.6	10	10	16
	Coarse	22.6	32	14	14	30
	Very Coarse	32	45	26	26	56
	Very Coarse	45	64	20	20	76
	Small	64	90	10	10	86
CORRIE	Small	90	128	6	6	92
, cogo	Large	128	180	8	8	100
	Large	180	256			100
	Small	256	362			100
BOULDER	Small	362	512			100
	Medium	512	1024			100
	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	100	100	100

	Cross-Section 10				
Ch	Channel materials (mm)				
D ₁₆ =	22.6				
D ₃₅ =	34.2				
D ₅₀ =	41.6				
D ₈₄ =	84.1				
D ₉₅ =	145.5				
D ₁₀₀ =	180.0				

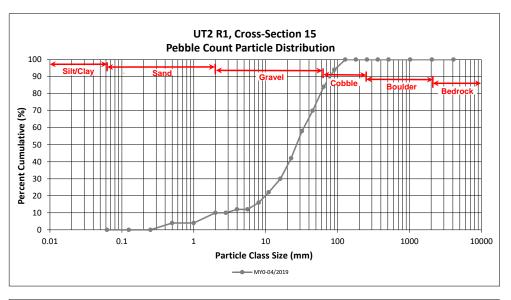


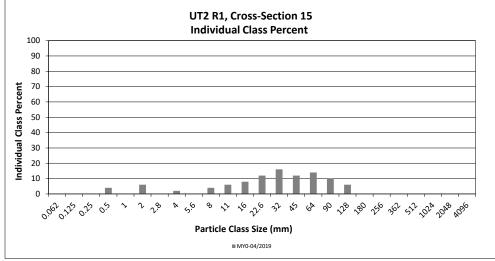

Lone Hickory Mitigation Site DMS Project No. 97135 **Monitoring Year 0 - 2019**

UT1 R3, Cross-Section 11

		Diame	ter (mm)	Riffle 100-	Sum	mary
Par	ticle Class			Count	Class	Percent
	>>>> I	min	max	count	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062			0
	Very fine	0.062	0.125			0
_	Fine	0.125	0.250			0
SAND	Medium	0.25	0.50	2	2	2
יכ	Coarse	0.5	1.0			2
	Very Coarse	1.0	2.0			2
	Very Fine	2.0	2.8			2
	Very Fine	2.8	4.0			2
	Fine	4.0	5.6			2
	Fine	5.6	8.0			2
JEL	Medium	8.0	11.0	4	4	6
GRAVEL	Medium	11.0	16.0	2	2	8
ŭ	Coarse	16.0	22.6	10	10	18
	Coarse	22.6	32	10	10	27
	Very Coarse	32	45	20	20	47
	Very Coarse	45	64	20	20	67
	Small	64	90	16	16	82
ale	Small	90	128	8	8	90
COBBLE	Large	128	180	8	8	98
·	Large	180	256	2	2	100
	Small	256	362			100
ROULDER	Small	362	512			100
201/12	Medium	512	1024			100
ν-	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
	•	•	Total	102	100	100

	Cross-Section 11			
Channel materials (mm)				
D ₁₆ =	21.3			
D ₃₅ =	36.5			
D ₅₀ =	47.4			
D ₈₄ =	96.9			
D ₉₅ =	157.7			
D ₁₀₀ =	256.0			

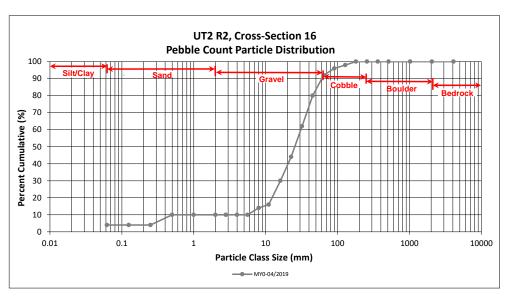


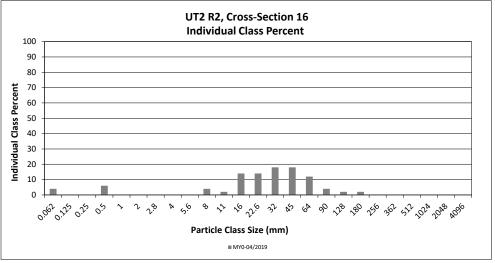

Lone Hickory Mitigation Site DMS Project No. 97135 **Monitoring Year 0 - 2019**

UT2 R1, Cross-Section 15

		Diame	ter (mm)	Riffle 100-	Summary	
Par	rticle Class			Count	Class	Percent
		min	max	Count	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062			0
	Very fine	0.062	0.125			0
_	Fine	0.125	0.250			0
SAND	Medium	0.25	0.50	4	4	4
יכ	Coarse	0.5	1.0			4
	Very Coarse	1.0	2.0	6	6	10
	Very Fine	2.0	2.8			10
	Very Fine	2.8	4.0	2	2	12
	Fine	4.0	5.6			12
	Fine	5.6	8.0	4	4	16
JEL	Medium	8.0	11.0	6	6	22
GRAVEL	Medium	11.0	16.0	8	8	30
	Coarse	16.0	22.6	12	12	42
	Coarse	22.6	32	16	16	58
	Very Coarse	32	45	12	12	70
	Very Coarse	45	64	14	14	84
	Small	64	90	10	10	94
ale	Small	90	128	6	6	100
COBBLE	Large	128	180			100
	Large	180	256			100
	Small	256	362			100
.0 ⁶⁸	Small	362	512			100
BOULDER	Medium	512	1024			100
v	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
•			Total	100	100	100

Cross-Section 15				
Channel materials (mm)				
D ₁₆ =	8.0			
D ₃₅ =	18.5			
D ₅₀ =	26.9			
D ₈₄ =	64.0			
D ₉₅ =	95.4			
D ₁₀₀ =	128.0			

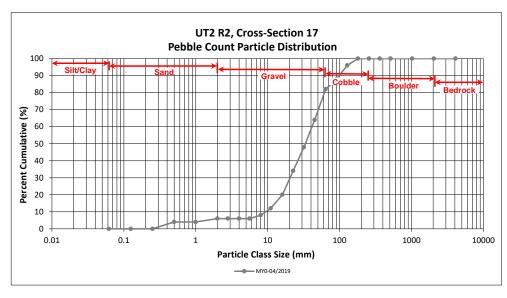


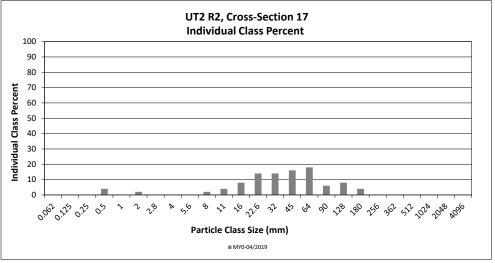

Lone Hickory Mitigation Site DMS Project No. 97135 **Monitoring Year 0 - 2019**

UT2 R2, Cross-Section 16

		Diame	ter (mm)	Riffle 100-	Sum	ımmary	
Particle Class				Count	Class	Percent	
		min	max	Count	Percentage	Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062	4	4	4	
	Very fine	0.062	0.125			4	
	Fine	0.125	0.250			4	
SAND	Medium	0.25	0.50	6	6	10	
לל	Coarse	0.5	1.0			10	
	Very Coarse	1.0	2.0			10	
	Very Fine	2.0	2.8			10	
	Very Fine	2.8	4.0			10	
	Fine	4.0	5.6			10	
	Fine	5.6	8.0	4	4	14	
JEL	Medium	8.0	11.0	2	2	16	
GRAVEL	Medium	11.0	16.0	14	14	30	
	Coarse	16.0	22.6	14	14	44	
	Coarse	22.6	32	18	18	62	
	Very Coarse	32	45	18	18	80	
	Very Coarse	45	64	12	12	92	
	Small	64	90	4	4	96	
ale	Small	90	128	2	2	98	
COBBLE	Large	128	180	2	2	100	
	Large	180	256			100	
BOULDER	Small	256	362	·		100	
	Small	362	512			100	
	Medium	512	1024	·		100	
v	Large/Very Large	1024	2048			100	
BEDROCK	Bedrock	2048	>2048			100	
			Total	100	100	100	

	Cross-Section 16				
Channel materials (mm)					
D ₁₆ =	11.0				
D ₃₅ =	18.1				
D ₅₀ =	25.4				
D ₈₄ =	50.6				
D ₉₅ =	82.6				
D ₁₀₀ =	180.0				

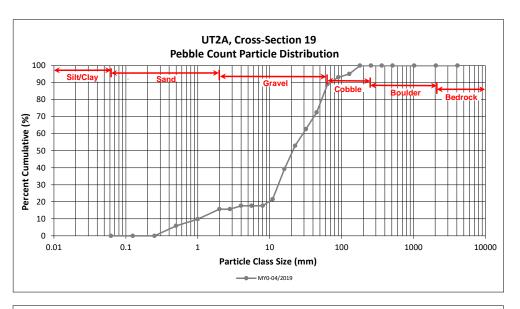


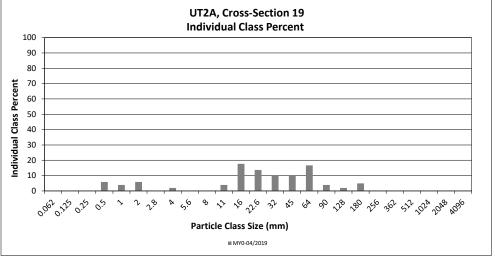

Lone Hickory Mitigation Site DMS Project No. 97135 **Monitoring Year 0 - 2019**

UT2 R2, Cross-Section 17

Particle Class		Diame	ter (mm)	Riffle 100-	Sum	mary
				Count	Class	Percent
		min	max	Count	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062			0
	Very fine	0.062	0.125			0
_	Fine	0.125	0.250			0
SAND	Medium	0.25	0.50	4	4	4
יל	Coarse	0.5	1.0			4
	Very Coarse	1.0	2.0	2	2	6
	Very Fine	2.0	2.8			6
	Very Fine	2.8	4.0			6
	Fine	4.0	5.6			6
	Fine	5.6	8.0	2	2	8
JEL	Medium	8.0	11.0	4	4	12
GRAVEL	Medium	11.0	16.0	8	8	20
	Coarse	16.0	22.6	14	14	34
	Coarse	22.6	32	14	14	48
	Very Coarse	32	45	16	16	64
	Very Coarse	45	64	18	18	82
	Small	64	90	6	6	88
ale	Small	90	128	8	8	96
COBBLE	Large	128	180	4	4	100
	Large	180	256			100
	Small	256	362			100
.0 ^{ER}	Small	362	512			100
BOULDER	Medium	512	1024			100
V	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	100	100	100

	Cross-Section 17			
Channel materials (mm)				
D ₁₆ =	13.3			
D ₃₅ =	23.2			
D ₅₀ =	33.4			
D ₈₄ =	71.7			
D ₉₅ =	122.5			
D ₁₀₀ =	180.0			

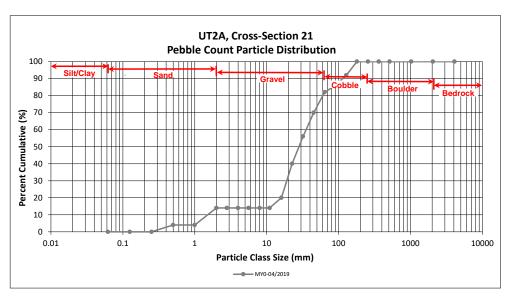


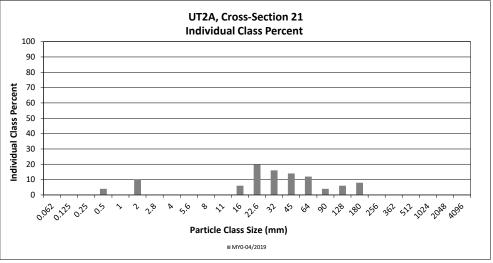

Lone Hickory Mitigation Site DMS Project No. 97135 **Monitoring Year 0 - 2019**

UT2A, Cross-Section 19

		Diame	ter (mm)	Riffle 100-	Summary	
Particle Class				Count	Class	Percent
		min	max		Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062			0
	Very fine	0.062	0.125			0
	Fine	0.125	0.250			0
SAND	Medium	0.25	0.50	6	6	6
יל	Coarse	0.5	1.0	4	4	10
	Very Coarse	1.0	2.0	6	6	16
	Very Fine	2.0	2.8			16
	Very Fine	2.8	4.0	2	2	18
	Fine	4.0	5.6			18
	Fine	5.6	8.0			18
JEL	Medium	8.0	11.0	4	4	22
GRAVEL	Medium	11.0	16.0	18	18	39
	Coarse	16.0	22.6	14	14	53
	Coarse	22.6	32	10	10	63
	Very Coarse	32	45	10	10	73
	Very Coarse	45	64	17	17	89
	Small	64	90	4	4	93
ale	Small	90	128	2	2	95
COBBLE	Large	128	180	5	5	100
•	Large	180	256			100
BOULDER	Small	256	362			100
	Small	362	512			100
201/r	Medium	512	1024			100
ν-	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
	•		Total	102	100	100

	Cross-Section 19			
Channel materials (mm)				
D ₁₆ =	3.0			
D ₃₅ =	14.6			
D ₅₀ =	21.0			
D ₈₄ =	57.3			
D ₉₅ =	125.8			
D ₁₀₀ =	180.0			

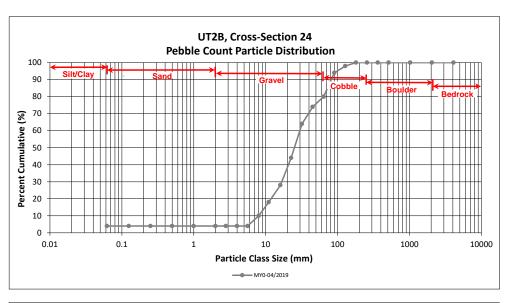

Lone Hickory Mitigation Site DMS Project No. 97135

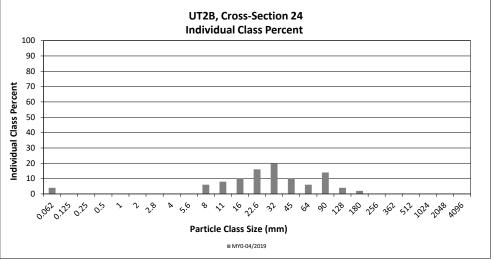

Monitoring Year 0 - 2019

UT2A, Cross-Section 21

		Diame	ter (mm)	Riffle 100-	Sum	mary
Par	ticle Class			Count	Class	Percent
	22T	min	max	Count	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062			0
	Very fine	0.062	0.125			0
	Fine	0.125	0.250			0
SAND	Medium	0.25	0.50	4	4	4
יל	Coarse	0.5	1.0			4
	Very Coarse	1.0	2.0	10	10	14
	Very Fine	2.0	2.8			14
	Very Fine	2.8	4.0			14
	Fine	4.0	5.6			14
	Fine	5.6	8.0			14
JEL	Medium	8.0	11.0			14
GRAVEL	Medium	11.0	16.0	6	6	20
•	Coarse	16.0	22.6	20	20	40
	Coarse	22.6	32	16	16	56
	Very Coarse	32	45	14	14	70
	Very Coarse	45	64	12	12	82
	Small	64	90	4	4	86
ale	Small	90	128	6	6	92
CORRIE	Large	128	180	8	8	100
•	Large	180	256			100
	Small	256	362			100
.OER	Small	362	512			100
BOULDER	Medium	512	1024			100
φ-	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	100	100	100

	Cross-Section 21			
Channel materials (mm)				
D ₁₆ =	12.5			
D ₃₅ =	20.7			
D ₅₀ =	28.1			
D ₈₄ =	75.9			
D ₉₅ =	145.5			
D ₁₀₀ =	180.0			

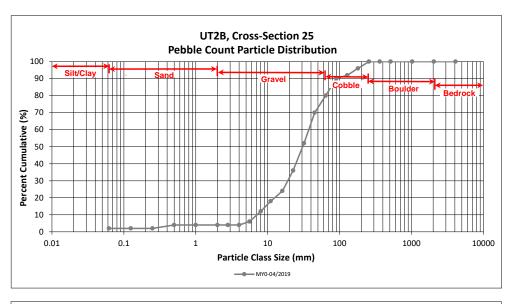


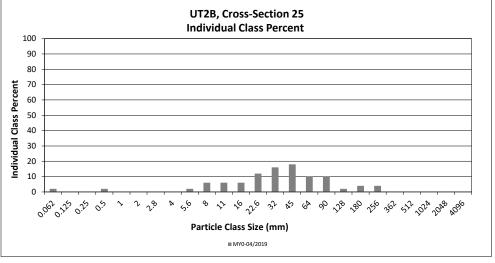

Lone Hickory Mitigation Site DMS Project No. 97135 **Monitoring Year 0 - 2019**

UT2B, Cross-Section 24

		Diame	ter (mm)	Riffle 100-	Summary							
Pai	rticle Class			Count	Class	Percent						
		min	max	Count	Percentage	Cumulative						
SILT/CLAY	Silt/Clay	0.000	0.062	4	4	4						
	Very fine	0.062	0.125			4						
	Fine	0.125	0.250			4						
SAND	Medium	0.25	0.50			4						
יל	Coarse	0.5	1.0			4						
	Very Coarse	1.0	2.0			4						
	Very Fine	2.0	2.8			4						
	Very Fine	2.8	4.0			4						
	Fine	4.0	5.6			4						
	Fine	5.6	8.0	6	6	10						
JEL	Medium	8.0	11.0	8	8	18						
GRAVEL	Medium	11.0	16.0	10	10	28						
	Coarse	16.0	22.6	16	16	44						
	Coarse	22.6	32	20	20	64						
	Very Coarse	32	45	10	10	74						
	Very Coarse	45	64	6	6	80						
	Small	64	90	14	14	94						
ale	Small	90	128	4	4	98						
COBBLE	Large	128	180	2	2	100						
	Large	180	256			100						
	Small	256	362			100						
BOULDER	Small	362	512			100						
2011,	Medium	512	1024			100						
v	Large/Very Large	1024	2048			100						
BEDROCK	Bedrock	2048	>2048			100						
. 6-7 - 7 - 1			Total	100	100	100						

	Cross-Section 24											
Channel materials (mm)												
D ₁₆ =	10.2											
D ₃₅ =	18.6											
D ₅₀ =	25.1											
D ₈₄ =	70.5											
D ₉₅ =	98.3											
D ₁₀₀ =	180.0											

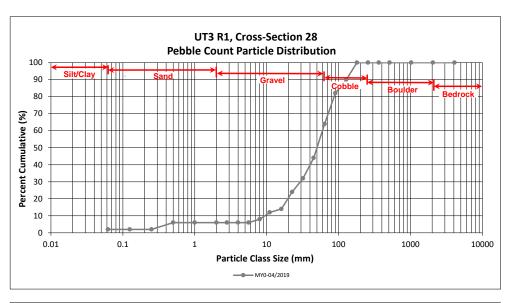


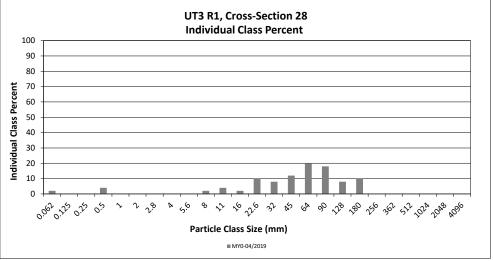

Lone Hickory Mitigation Site DMS Project No. 97135 **Monitoring Year 0 - 2019**

UT2B, Cross-Section 25

		Diame	ter (mm)	Riffle 100-	Summary							
Pai	rticle Class	min	max	Count	Class Percentage	Percent Cumulative						
SILT/CLAY	Silt/Clay	0.000	0.062	2	2	2						
SILT/ CLAT	Very fine	0.062	0.125		2	2						
	Fine	0.125	0.250			2						
SAND	Medium	0.25	0.50	2	2	4						
ζħ.	Coarse	0.5	1.0	<u>-</u>		4						
	Very Coarse	1.0	2.0			4						
	Very Fine	2.0	2.8			4						
	Very Fine	2.8	4.0			4						
	Fine	4.0	5.6	2	2	6						
	Fine	5.6	8.0	6	6	12						
,EL	Medium	8.0	11.0	6	6	18						
GRAVEL	Medium	11.0	16.0	6	6	24						
•	Coarse	16.0	22.6	12	12	36						
	Coarse	22.6	32	16	16	52						
	Very Coarse	32	45	18	18	70						
	Very Coarse	45	64	10	10	80						
	Small	64	90	10	10	90						
COBBLE	Small	90	128	2	2	92						
CORY	Large	128	180	4	4	96						
	Large	180	256	4	4	100						
	Small	256	362			100						
, OER	Small	362	512			100						
ROULDER	Medium	512	1024			100						
V	Large/Very Large	1024	2048			100						
BEDROCK	Bedrock	2048	>2048			100						
			Total	100	100	100						

	Cross-Section 25											
Channel materials (mm)												
D ₁₆ =	9.9											
D ₃₅ =	22.0											
D ₅₀ =	30.6											
D ₈₄ =	73.4											
D ₉₅ =	165.3											
D ₁₀₀ =	256.0											

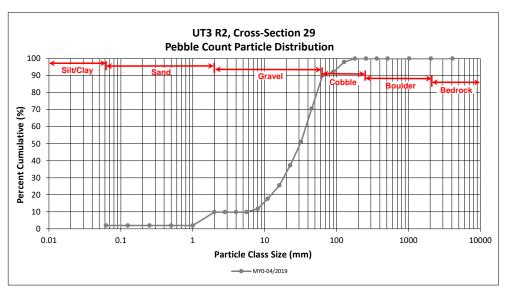


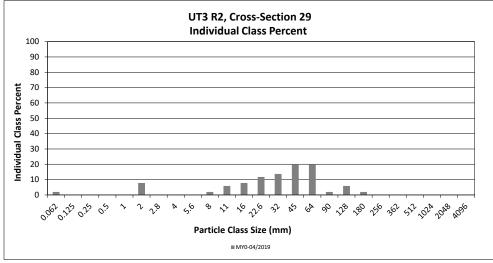

Lone Hickory Mitigation Site DMS Project No. 97135 **Monitoring Year 0 - 2019**

UT3 R1, Cross-Section 28

		Diame	ter (mm)	Riffle 100-	Summary							
Par	ticle Class			Count	Class P	Percent						
		min	max		Percentage	Cumulative						
SILT/CLAY	Silt/Clay	0.000	0.062	2	2	2						
	Very fine	0.062	0.125			2						
•	Fine	0.125	0.250			2						
SAND	Medium	0.25	0.50	4	4	6						
יל	Coarse	0.5	1.0			6						
	Very Coarse	1.0	2.0			6						
	Very Fine	2.0	2.8			6						
	Very Fine	2.8	4.0			6						
	Fine	4.0	5.6			6						
	Fine	5.6	8.0	2	2	8						
JEL	Medium	8.0	11.0	4	4	12						
GRAVEL	Medium	11.0	16.0	2	2	14						
-	Coarse	16.0	22.6	10	10	24						
	Coarse	22.6	32	8	8	32						
	Very Coarse	32	45	12	12	44						
	Very Coarse	45	64	20	20	64						
	Small	64	90	18	18	82						
COBBLE	Small	90	128	8	8	90						
CORY	Large	128	180	10	10	100						
	Large	180	256			100						
	Small	256	362			100						
.OER	Small	362	512			100						
BOULDER	Medium	512	1024			100						
V	Large/Very Large	1024	2048			100						
BEDROCK	Bedrock	2048	>2048			100						
			Total	100	100	100						

	Cross-Section 28
Ch	annel materials (mm)
D ₁₆ =	17.1
D ₃₅ =	34.8
D ₅₀ =	50.0
D ₈₄ =	98.3
D ₉₅ =	151.8
D ₁₀₀ =	180.0

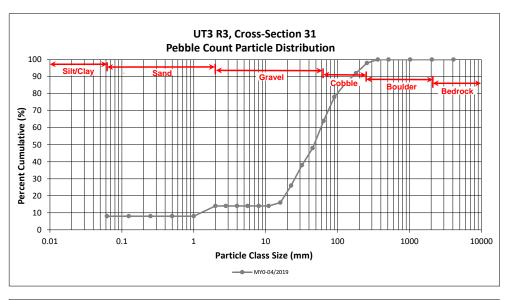


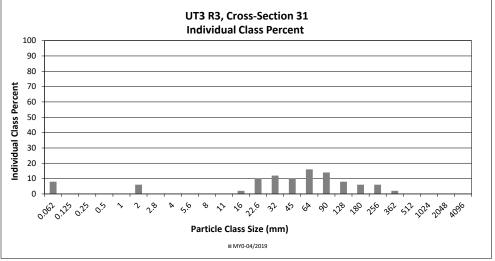

Lone Hickory Mitigation Site DMS Project No. 97135 **Monitoring Year 0 - 2019**

UT3 R2, Cross-Section 29

		Diame	ter (mm)	Riffle 100-	Summary								
Par	rticle Class	min	max	Count	Class Percentage	Percent Cumulative							
SILT/CLAY	Silt/Clay	0.000	0.062	2	2	2							
	Very fine	0.062	0.125			2							
	Fine	0.125	0.250			2							
SAND	Medium	0.25	0.50			2							
'ל	Coarse	0.5	1.0			2							
	Very Coarse	1.0	2.0	8	8	10							
	Very Fine	2.0	2.8			10							
	Very Fine	2.8	4.0			10							
	Fine	4.0	5.6			10							
	Fine	5.6	8.0	2	2	12							
JEL	Medium	8.0	11.0	6	6	18							
GRAVEL	Medium	11.0	16.0	8	8	25							
	Coarse	16.0	22.6	12	12	37							
	Coarse	22.6	32	14	14	51							
	Very Coarse	32	45	20	20	71							
	Very Coarse	45	64	20	20	90							
	Small	64	90	2	2	92							
COBBLE	Small	90	128	6	6	98							
CORY	Large	128	180	2	2	100							
	Large	180	256			100							
	Small	256	362			100							
,0 ^{ER}	Small	362	512			100							
BOULDER	Medium	512	1024			100							
Ø	Large/Very Large	1024	2048	<u>-</u>		100							
BEDROCK	Bedrock	2048	>2048			100							
			Total	102	100	100							

	Cross-Section 29												
Channel materials (mm)													
D ₁₆ =	10.1												
D ₃₅ =	21.2												
D ₅₀ =	31.2												
D ₈₄ =	57.3												
D ₉₅ =	106.7												
D ₁₀₀ =	180.0												




Lone Hickory Mitigation Site DMS Project No. 97135 **Monitoring Year 0 - 2019**

UT3 R3, Cross-Section 31

		Diame	ter (mm)	Riffle 100-	Sum	mary
Par	ticle Class			Count	Class	Percent
	***	min	max		Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	8	8	8
	Very fine	0.062	0.125			8
	Fine	0.125	0.250			8
SAND	Medium	0.25	0.50			8
ייכ	Coarse	0.5	1.0			8
	Very Coarse	1.0	2.0	6	6	14
	Very Fine	2.0	2.8			14
	Very Fine	2.8	4.0			14
	Fine	4.0	5.6			14
	Fine	5.6	8.0			14
JEL	Medium	8.0	11.0			14
GRAVEL	Medium	11.0	16.0	2	2	16
_	Coarse	16.0	22.6	10	10	26
	Coarse	22.6	32	12	12	38
	Very Coarse	32	45	10	10	48
	Very Coarse	45	64	16	16	64
	Small	64	90	14	14	78
CORRIE	Small	90	128	8	8	86
COBY	Large	128	180	6	6	92
_	Large	180	256	6	6	98
	Small	256	362	2	2	100
, Offe	Small	362	512			100
BOULDER	Medium	512	1024			100
70	Large/Very Large	1024	2048			100
BEDROCK			>2048			100
	-	•	Total	100	100	100

Cross-Section 31												
Channel materials (mm)												
D ₁₆ =	16.0											
D ₃₅ =	29.3											
D ₅₀ =	47.0											
D ₈₄ =	117.2											
D ₉₅ =	214.7											
D ₁₀₀ =	362.0											



Photo Point 1 – UT1 Reach 1, view upstream (04/04/2019)

Photo Point 1 – UT1 Reach 1, view downstream (04/04/2019)

Photo Point 2 – UT1 Reach 1, view upstream (04/04/2019)

Photo Point 2 – UT1 Reach 1, view downstream (04/04/2019)

Photo Point 3 – UT1 Reach 1, view upstream (04/04/2019)

Photo Point 3 – UT1 Reach 1, view downstream (04/04/2019)

Photo Point 4 – UT1 Reach 2A, view upstream (04/04/2019)

Photo Point 4 – UT1 Reach 2A, view downstream (04/04/2019)

Photo Point 5 – UT1 Reach 2A, view upstream (04/04/2019)

Photo Point 5 – UT1 Reach 2A, view downstream (04/04/2019)

Photo Point 6 – UT1 Reach 2A, view upstream (04/04/2019)

Photo Point 6 – UT1 Reach 2A, view downstream (04/04/2019)

Photo Point 7 – UT1 Reach 2A, view upstream (04/04/2019)

Photo Point 7 – UT1 Reach 2A, view downstream (04/04/2019)

Photo Point 8 – UT1 Reach 2A, view upstream (04/04/2019)

Photo Point 8 – UT1 Reach 2A, view downstream (04/04/2019)

Photo Point 9 – UT1 Reach 2A, view upstream (04/04/2019)

Photo Point 9 – UT1 Reach 2A, view downstream (04/04/2019)

Photo Point 9 - UT1A, view upstream (04/04/2019)

Photo Point 10 - UT1 Reach 2B, view upstream (04/04/2019)

Photo Point 11 – UT1 Reach 2B, view upstream (04/04/2019)

Photo Point 11 – UT1 Reach 2B, view downstream (04/04/2019)

Photo Point 12 – UT1 Reach 2B, view upstream (04/04/2019)

Photo Point 12 – UT1 Reach 2B, view downstream (04/04/2019)

Photo Point 13 – UT1 Reach 2B, view upstream (04/04/2019)

Photo Point 13 – UT1 Reach 2B, view downstream (04/04/2019)

Photo Point 14 – UT1 Reach 2B, view upstream (04/04/2019)

Photo Point 14 – UT1 Reach 2B, view downstream (04/04/2019)

Photo Point 14 – UT1B, view upstream (04/04/2019)

Photo Point 15 – UT1 Reach 3, view upstream (04/04/2019)

Photo Point 16 – UT1 Reach 3, view upstream (04/04/2019)

Photo Point 15 – UT1 Reach 3, view downstream (04/04/2019)

Photo Point 16 – UT1 Reach 3, view downstream (04/04/2019)

Photo Point 17 - UT1 Reach 3, view upstream (04/04/2019)

Photo Point 17 – UT1 Reach 3, view downstream (04/04/2019)

Photo Point 18 – UT1 Reach 3, view upstream (04/04/2019)

Photo Point 18 – UT1 Reach 3, view downstream (04/04/2019)

Photo Point 19 – UT1 Reach 3, view upstream (04/04/2019)

Photo Point 19 – UT1 Reach 3, view downstream (04/04/2019)

Photo Point 20 – UT1 Reach 3, view upstream (04/04/2019)

Photo Point 20 – UT1 Reach 3, view downstream (04/04/2019)

Photo Point 20 – UT1 Reach 3 BMP 3, view upstream (04/04/2019)

Photo Point 21 – UT1 Reach 4, view upstream (04/04/2019)

Photo Point 21 – UT1 Reach 4, view downstream (04/04/2019)

Photo Point 22 – UT2 Reach 1, view upstream (04/04/2019)

Photo Point 22 – UT2 Reach 1, view downstream (04/04/2019)

Photo Point 23 – UT2 Reach 1, view upstream (04/04/2019)

Photo Point 23 – UT2 Reach 1, view downstream (04/04/2019)

Photo Point 24 – UT2 Reach 2, view upstream (04/04/2019)

Photo Point 24 – UT2 Reach 2, view downstream (04/04/2019)

Photo Point 25 – UT2 Reach 2, view upstream (04/04/2019)

Photo Point 25 – UT2 Reach 2, view downstream (04/04/2019)

Photo Point 26 – UT2 Reach 2, view upstream (04/04/2019)

Photo Point 26 – UT2 Reach 2, view downstream (04/04/2019)

Photo Point 27 – UT2A, view upstream (04/17/2019)

Photo Point 27 – UT2A, view downstream (04/17/2019)

Photo Point 28 – UT2A, view upstream (04/17/2019)

Photo Point 28 – UT2A, view downstream (04/17/2019)

Photo Point 29 – UT2A, view upstream (04/17/2019)

Photo Point 29 – UT2A, view downstream (04/17/2019)

Photo Point 30 – UT2B, view upstream (04/17/2019)

Photo Point 30 – UT2B, view downstream (04/17/2019)

Photo Point 31 – UT2B, view upstream (04/17/2019)

Photo Point 31 – UT2B, view downstream (04/17/2019)

Photo Point 32 – UT2B, view upstream (04/17/2019)

Photo Point 32 – UT2B, view downstream (04/17/2019)

Photo Point 33 – UT3 Reach 1, view upstream (04/17/2019)

Photo Point 33 – UT3 Reach 1, view downstream (04/17/2019)

Photo Point 34 – UT3 Reach 1, view upstream (04/17/2019)

Photo Point 34 – UT3 Reach 1, view downstream (04/17/2019)

Photo Point 35 – UT3 Reach 1, view upstream (04/17/2019)

Photo Point 35 – UT3 Reach 1, view downstream (04/17/2019)

Photo Point 36 – UT3 Reach 2, view upstream (04/17/2019)

Photo Point 36 – UT3 Reach 2, view downstream (04/17/2019)

Photo Point 37 – UT3 Reach 2, view upstream (04/17/2019)

Photo Point 37 – UT3 Reach 2, view downstream (04/17/2019)

Photo Point 38 – UT3 Reach 2, view upstream (04/17/2019)

Photo Point 38 – UT3 Reach 2, view downstream (04/17/2019)

Photo Point 39 – UT3 Reach 3, view upstream (04/17/2019)

Photo Point 39 – UT3 Reach 3, view downstream (04/17/2019)

Photo Point 40 – UT3 Reach 3, view upstream (04/17/2019)

Photo Point 40 – UT3 Reach 3, view downstream (04/17/2019)

Photo Point 41 – UT3 Reach 3, view upstream (04/17/2019)

Photo Point 41 – UT3 Reach 3, view downstream (04/17/2019)

Photo Point 42 – UT1 Reach 3, up valley (04/04/2019)

Photo Point 42 – UT1 Reach 4, down valley (04/04/2019)

Photo Point 43 – UT2A, northeast view (04/17/2019)

Photo Point 43 – UT2A, north view (04/17/2019)

Photo Point 43 – UT3 Reach 3, northwest view (04/17/2019)

Photo Point 44 – BMP 4 above UT2B, inlet view (04/24/2019)

Photo Point 44 – BMP 4 above UT2B, outlet view (04/24/2019)

Table 9a. Planted and Total Stem Counts

Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 0 - 2019

Permanent Vegetation Monitoring Plots

				Current Permanent Vegetation Plot Data (MYO 2019)																												
			971	35-WEI	-0001	971	35-WEI	-0002	971	35-WEI	-0003	971	35-WEI-	-0004	971	35-WEI-	0005	971	35-WEI-	0006	9713	35-WEI	-0007	971	35-WEI	-0008	9713	35-WEI-	-0009	971	35-WEI-	0010
Scientific Name	Common Name	Species Type	PnoLS	P-all	т	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	T	PnoLS	P-all	Т
Acer rubrum	Red Maple	Tree																														
Betula nigra	River Birch	Tree	3	3	3				2	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	2	2	2	2	2
Diospyros virginiana	American Persimmon	Tree																														
Fraxinus pennsylvanica	Green Ash	Tree													3	3	3													2	2	2
Liriodendron tulipifera	Tulip Poplar	Tree	3	3	3	5	5	5				2	2	2	3	3	3	2	2	2	5	5	5	3	3	3	4	4	4	3	3	3
Platanus occidentalis	Sycamore	Tree	3	3	3	4	4	4	3	3	3	4	4	4	3	3	3	3	3	3	5	5	5	2	2	2	5	5	5			
Populus deltoides	Eastern Cottonwood	Tree																														
Quercus lyrata	Overcup Oak	Tree																														
Quercus michauxii	Swamp Chestnut Oak	Tree	2	2	2	2	2	2	5	5	5	3	3	3	1	1	1	4	4	4	2	2	2	1	1	1				3	3	3
Quercus pagoda	Cherrybark Oak	Tree	4	4	4	3	3	3	3	3	3	2	2	2	1	1	1							5	5	5	1	1	1	2	2	2
Quercus phellos	Willow Oak	Tree				1	1	1	2	2	2	1	1	1	1	1	1	2	2	2				1	1	1	3	3	3	3	3	3
		Stem count	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	14	14	14	15	15	15	15	15	15	15	15	15	15	15	15
		size (ares)		1			1			1			1			1			1			1			1			1			1	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02			0.02			0.02			0.02			0.02	
		Species count	5	5	5	5	5	5	5	5	5	6	6	6	7	7	7	5	5	5	4	4	4	6	6	6	5	5	5	6	6	6
		Stems per ACRE	607	607	607	607	607	607	607	607	607	607	607	607	607	607	607	567	567	567	607	607	607	607	607	607	607	607	607	607	607	607

Color for Density

Exceeds requirements by 10% Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10%
Fails to meet requirements by more than 10%
Volunteer species included in total

PnoLS: Number of planted stems excluding live stakes P-all: Number of planted stems including live stakes

T: Total stems

Table 9b. Planted and Total Stem Counts

Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 0 - 2019

Permanent Vegetation Monitoring Plots

	-													Curi	rent Pe	rmanen	t Veget	ation P	ot Data	(MY0	2019)									Current Permanent Vegetation Plot Data (MY0 2019)													
			97135-WEI-0011 97135-WEI-0012 93		971	35-WEI	-0013	9713	35-WEI-	0014	971	35-WEI-	-0015	971	35-WEI-	0016	97135-WEI-0017			97135-WEI-0018			971	35-WEI-	0019	9713	35-WEI-	0020															
Scientific Name	Common Name	Species Type	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	Т	PnoLS	P-all	T	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	T											
Acer rubrum	Red Maple	Tree																			1	1	1							J													
Betula nigra	River Birch	Tree	3	3	3	3	3	3	2	2	2	3	3	3	1	1	1				1	1	1	1	1	1	3	3	3	3	3	3											
Diospyros virginiana	American Persimmon	Tree																			1	1	1							J													
Fraxinus pennsylvanica	Green Ash	Tree	1	1	1				2	2	2	1	1	1	1	1	1	1	1	1	2	2	2	1	1	1	1	1	1	3	3	3											
Liriodendron tulipifera	Tulip Poplar	Tree	2	2	2	8	8	8	2	2	2				1	1	1							2	2	2	3	3	3	3	3	3											
Platanus occidentalis	Sycamore	Tree	3	3	3	1	1	1	3	3	3	4	4	4	4	4	4	5	5	5	5	5	5	6	6	6	3	3	3	3	3	3											
Populus deltoides	Eastern Cottonwood	Tree										3	3	3							2	2	2																				
Quercus lyrata	Overcup Oak	Tree	2	2	2	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	3	3	3	5	5	5	2	2	2	1	1	1											
Quercus michauxii	Swamp Chestnut Oak	Tree																												1													
Quercus pagoda	Cherrybark Oak	Tree	2	2	2	2	2	2	3	3	3				4	4	4	1	1	1				1	1	1																	
Quercus phellos	Willow Oak	Tree	2	2	2				1	1	1	2	2	2	2	2	2	6	6	6							3	3	3	2	2	2											
		Stem count	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	16	16	16	15	15	15	15	15	15											
		size (ares)		1			1			1			1			1			1			1			1			1			1												
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02			0.02			0.02			0.02			0.02												
	•	Species count	7	7	7	5	5	5	7	7	7	6	6	6	7	7	7	5	5	5	7	7	7	6	6	6	6	6	6	6	6	6											
	•	Stems per ACRE	607	607	607	607	607	607	607	607	607	607	607	607	607	607	607	607	607	607	607	607	607	647	647	647	607	607	607	607	607	607											

						(Current	Perma	nent Ve	getatio	n Plot	Data (M	Y0 201	9)				An	nual Me	ean
			97135-WEI-0021			97135-WEI-0022			97135-WEI-0023		97135-WEI-0024		97135-WEI-0025		MY0 (2019)					
Scientific Name	Common Name	Species Type	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	Т	PnoLS	P-all	Т
Acer rubrum	Red Maple	Tree				1	1	1	1	1	1							3	3	3
Betula nigra	River Birch	Tree	2	2	2	2	2	2	2	2	2	3	3	3	2	2	2	55	55	55
Diospyros virginiana	American Persimmon	Tree				2	2	2	3	3	3							6	6	6
Fraxinus pennsylvanica	Green Ash	Tree				2	2	2	2	2	2	1	1	1				23	23	23
Liriodendron tulipifera	Tulip Poplar	Tree	2	2	2							2	2	2	3	3	3	58	58	58
Platanus occidentalis	Sycamore	Tree	3	3	3	3	3	3				1	1	1	1	1	1	77	77	77
Populus deltoides	Eastern Cottonwood	Tree				2	2	2	1	1	1							8	8	8
Quercus lyrata	Overcup Oak	Tree	3	3	3	1	1	1	2	2	2	3	3	3	2	2	2	33	33	33
Quercus michauxii	Swamp Chestnut Oak	Tree																23	23	23
Quercus pagoda	Cherrybark Oak	Tree	2	2	2							2	2	2	4	4	4	42	42	42
Quercus phellos	Willow Oak	Tree	3	3	3	2	2	2	3	3	3	3	3	3	3	3	3	46	46	46
		Stem count	15	15	15	15	15	15	14	14	14	15	15	15	15	15	15	374	374	374
		size (ares)		1			1			1			1			1			25	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.62	
		Species count	6	6	6	8	8	8	7	7	7	7	7	7	6	6	6	11	11	11
		Stems per ACRE	607	607	607	607	607	607	567	567	567	607	607	607	607	607	607	605	605	605

Color for Density

Exceeds requirements by 10%
Exceeds requirements, but by less than 10%
Fails to meet requirements, by less than 10%
Fails to meet requirements by more than 10%
Volunteer species included in total

PnoLS: Number of planted stems excluding live stakes P-all: Number of planted stems including live stakes T: Total stems

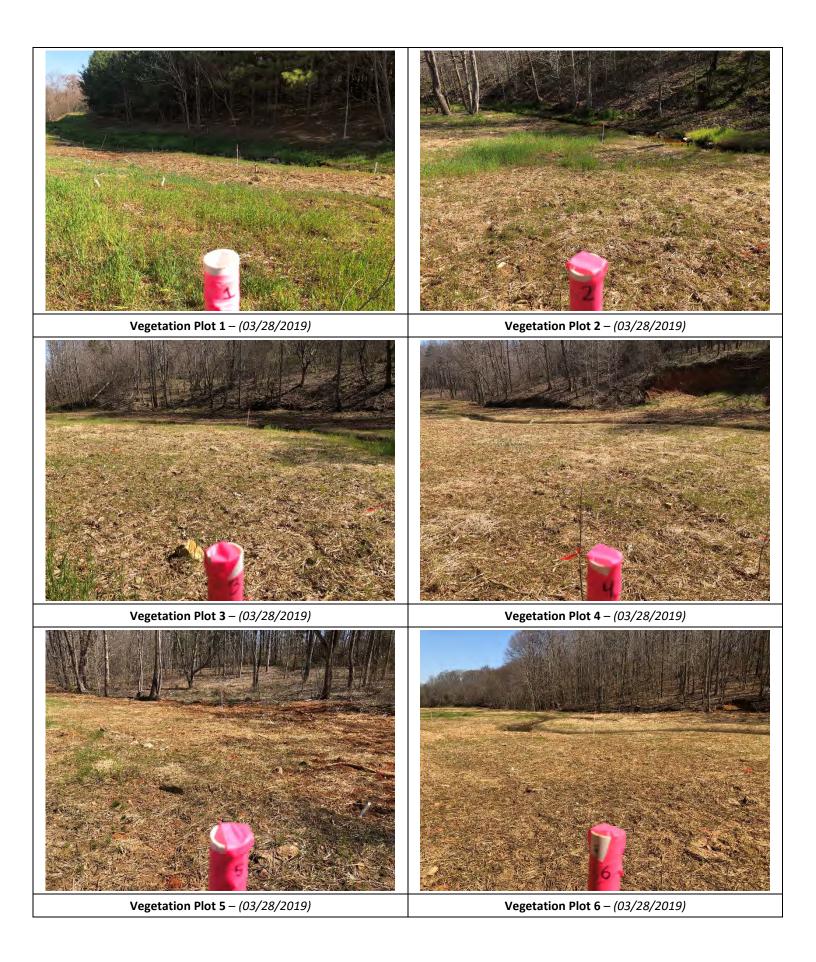
Table 9c. Planted and Total Stem Counts

Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 0 - 2019

Mobile Vegetation Monitoring Plots

			Current Mobile Vegetation Plot Data (MYO 2019)										
			MP1	MP2	MP3	MP4	MP5	MP6	MP7	MP8	MP9	MP10	
Scientific Name	Common Name	Species Type	PnoLS	PnoLS	PnoLS	PnoLS	PnoLS	PnoLS	PnoLS	PnoLS	PnoLS	PnoLS	
Acer rubrum	Red Maple	Tree											
Betula nigra	River Birch	Tree	5	2		1		2		1	3	1	
Diospyros virginiana	American Persimmon	Tree											
Fraxinus pennsylvanica	Green Ash	Tree	1	1	2	1	3	1		1	2		
Liriodendron tulipifera	Tulip Poplar	Tree	5	6		4	1	4	4	6	1	2	
Platanus occidentalis	Sycamore	Tree	4	5	5		1		3	3	4	5	
Populus deltoides	Eastern Cottonwood	Tree											
Quercus lyrata	Overcup Oak	Tree						2	1			2	
Quercus michauxii	Swamp Chestnut Oak	Tree	3	2									
Quercus pagoda	Cherrybark Oak	Tree	1	3	8	5	5	4	4	3	3	3	
Quercus phellos	Willow Oak	Tree		1	2	1	2		1				
		Stem count	19	20	17	12	12	13	13	14	13	13	
size (ares			1	1	1	1	1	1	1	1	1	1	
size (ACRES			0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	
Species coun			6	7	4	5	5	5	5	5	5	5	
	•	Stems per ACRE	769	809	688	486	486	526	526	567	526	526	


				Annual Mean				
			MP11	MP12	MP13	MP14	MP15	MY0 (2019)
Scientific Name	Common Name	Species Type	PnoLS	PnoLS	PnoLS	PnoLS	PnoLS	PnoLS
Acer rubrum	Red Maple	Tree						
Betula nigra	River Birch	Tree	4	2	1	3	2	27
Diospyros virginiana	American Persimmon	Tree						
Fraxinus pennsylvanica	Green Ash	Tree	2	1	1	1	1	18
Liriodendron tulipifera	Tulip Poplar	Tree	1	2	6	2	3	47
Platanus occidentalis	Sycamore	Tree	4	3	2	2	2	43
Populus deltoides	Eastern Cottonwood	Tree						
Quercus lyrata	Overcup Oak	Tree			1	1		7
Quercus michauxii	Swamp Chestnut Oak	Tree						5
Quercus pagoda	Cherrybark Oak	Tree	1	4	3	4	5	56
Quercus phellos	Willow Oak	Tree	1	3			2	13
		Stem count	13	15	14	13	15	216
		size (ares)	1	1	1	1	1	15
		size (ACRES)	0.02	0.02	0.02	0.02	0.02	0.37
		Species count	6	6	6	6	6	8
	•	526	607	567	526	607	583	


Overall Site Annual Mean
MY0 (2019)
PnoLS
3
82
6
41
105
120
8
40
28
98
59
590
40
0.99
11
597

Color for Density

Exceeds requirements by 10%
Exceeds requirements, but by less than 10%
Fails to meet requirements, by less than 10%
Fails to meet requirements by more than 10%
Volunteer species included in total

PnoLS: Number of planted stems excluding live stakes P-all: Number of planted stems including live stakes T: Total stems

Vegetation Plot 8 – (03/28/2019)

Vegetation Plot 9 – (03/28/2019)

Vegetation Plot 10 – (03/28/2019)

Vegetation Plot 11 – (04/17/2019)

Vegetation Plot 12 – (04/17/2019)

Vegetation Plot 13 – (04/17/2019)

Vegetation Plot 14 – (04/17/2019)

Vegetation Plot 15 – (04/17/2019)

Vegetation Plot 16 – (04/17/2019)

Vegetation Plot 17 – (04/17/2019)

Vegetation Plot 18 – (04/17/2019)

Vegetation Plot 25 – (04/17/2019)

Lone Hickory Mitigation Site

Yadkin County, North Carolina for NCDEQ Division of Mitigation Services

Yadkinville, NC

RECORD DRAWINGS ISSUED JULY 10, 2019

Vicinity Map Not to Scale

CERTIFICATE OF SURVEY AND ACCURACY

I, <u>DAVID S. TURNER</u>, CERTIFY THAT THE GROUND TOPOGRAPHIC SURVEY PORTION OF THIS PROJECT WAS COMPLETED UNDER MY DIRECT SUPERVISION FROM AN ACTUAL SURVEY MADE UNDER MY DIRECT SUPERVISION, THAT THE RECORD DRAWINGS WERE PREPARED BY WILDLANDS ENGINEERING, INC FROM DIGITAL FILES PROVIDED BY TURNER LAND SURVEYING, PLIC AS SHOWN ON AN AS-BUILT SURVEY FOR "THE STATE OF NC, DIVISION OF MITIGATION SERVICES" DATED MAY 30, 2019; THAT THIS SURVEY WAS PERFORMED AT THE 95% CONFIDENCE LEVEL TO MEET THE FEDERAL GEOGRAPHIC DATA COMMITTEE STANDARDS; THAT THIS SURVEY WAS PERFORMED TO MEET THE REQUIREMENTS FOR A TOPOGRAPHIC SURVEY TO THE ACCURACY OF CLASS A HORIZONTAL AND CLASS C VERTICAL WHERE APPLICABLE; THAT THE ORIGINAL DATA WAS OBTAIN BETWEEN THE DATES OF JAN 16 & MAY 15 2019; THAT THE CONTOURS SHOWN AS BROKEN LINES MAY NOT MEET THE STATED STANDARD AND ALL COORDINATES ARE BASED ON NAD 83 (NSRS 2011) AND ALL ELEVATIONS ARE BASE ON NAVO 88; THAT THIS MAP MEETS THE SPECIFICATIONS FOR TOPOGRAPHIC SURVEYS AS STATED IN TITLE 21, CHAPTER 56, SECTION 1,500; THAT THIS MAP WAS NOT PREPARED IN ACCORDANCE WITH G.S. 47-30, AS AMENDED AND DOES NOT REPRESENT AN OFFICIAL BOUNDARY SURVEY.

WITNESS MY ORIGINAL SIGNATURE, REGISTRATION NUMBER, AND SEAL THIS THE 砂塩 DAY OF Tuly 20日.

OFFICIAL SEAL

Sheet Index

Title Sheet	0.1
General Notes and Symbols	0.2
Project Overview	0.3 - 0.5
Stream Plan and Profile	
UT1	1.1 - 1.15
UT2	1.16 - 1.1
UT2A	1.20 - 1.2
UT2B	1.22 - 1.2
UT3	1.24 - 1.2
Additional Grading Overview	2.0
BMP Grading	2.1 - 2.3
Wetland Grading	2.4 - 2.5
Planting	3.0 - 3.10

Project Directory

Engineering:	Owner:
Wildlands Engineering, Inc.	NCDEQ - Division of Mitigation Service
License No. F-0831	217 West Jones Street, 3rd floor
1430 South Mint Street, Ste 104	Raleigh, NC 27603
Charlotte, NC 28203	
Emily G. Reinicker, PE	
704-332-7754	
As-Built Survey:	DMS Project No. 97135
Turner Land Surveying, PLLC	Yadkin River Basin HUC 03040101
P.O. Box 148	
Swannanoa, NC 28778	
Telephone: (919) 827-0745	
Initial Topographic Survey:	
Kee Mapping and Surveying, PA	
88 Central Avenue	
Asheville, NC 28801	
Nolan Carmack, PLS	
828-575-9021	

Lone Hickory Mitigation Site Record Drawings Yadkin County, North Carolina

Revisions:

Design Features Pre-construction Features Design Structures 10+00 - Design Thalweg Alignment - CE ---- Recorded Conservation Easement Design Bankfull Pre-construction Property Line ------ Design Major Contour Pre-construction Overhead Electric Design Minor Contour ø Pre-construction Power Pole Design Safety Fence Pre-construction Storm Pipe Design Silt Fence Pre-construction Farm Road Design Limits of Disturbance Pre-project Wetland Delineation Pre-construction Tree Pre-construction Bedrock Pre-construction Road Pre-construction Treeline

Deviations from the design will be shown in red.

PROJECT NOTES:

Topographic survey was completed by Kee Mapping and Surveying in February 2017. Parcel boundary survey completed by Kee Mapping and Surveying in July 2017.

Topographic data outside Design conservation easement supplemented with Lidar data from September 2015.

As-Built survey completed April 2019 by Turner Land Surveying.

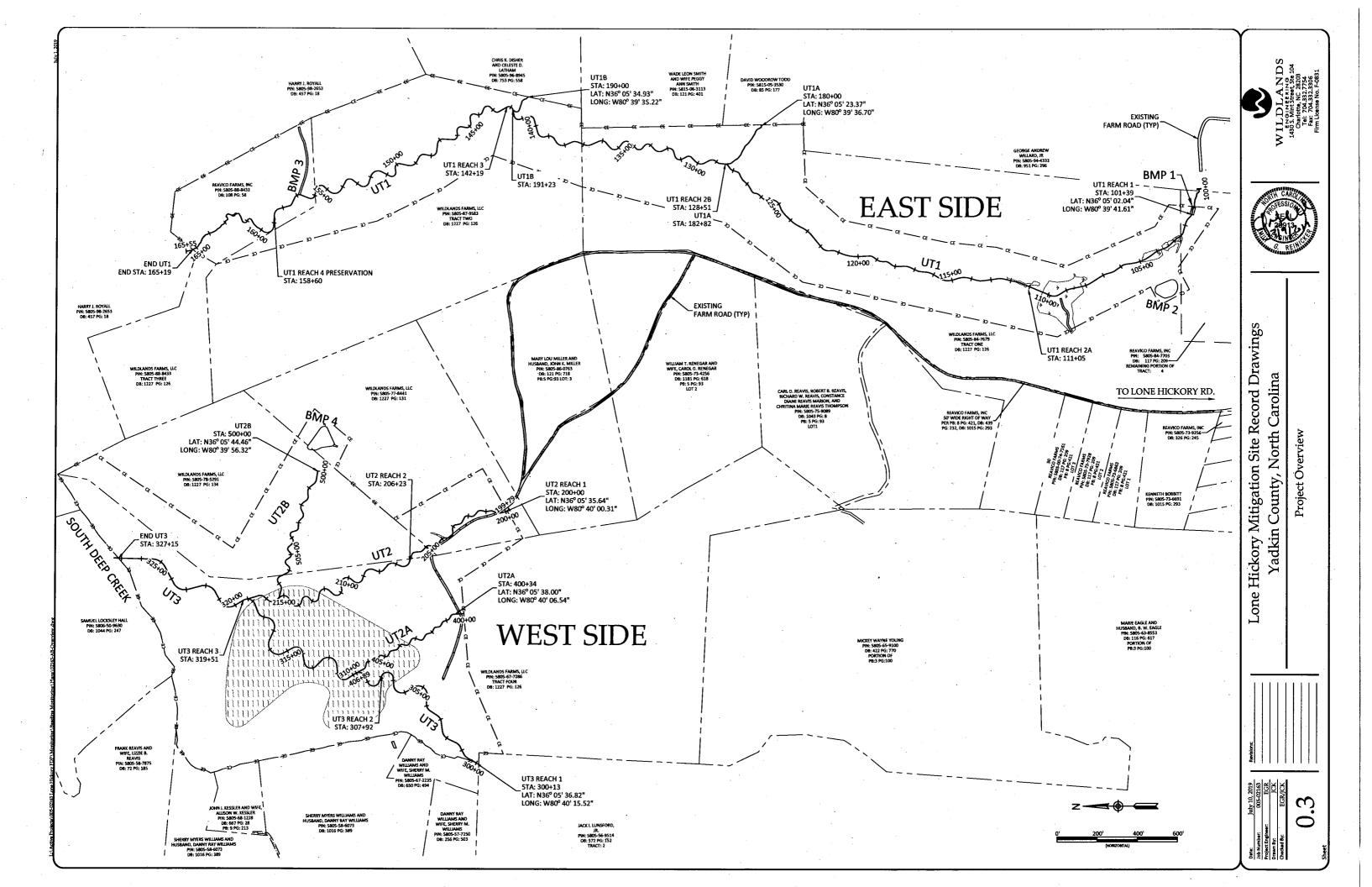
Lone Hickory Mitigation Site Record Drawings Design Constructed Riffle Design Brush Toe Design Bank Grading in Preservation Areas Design Channel Stabilization

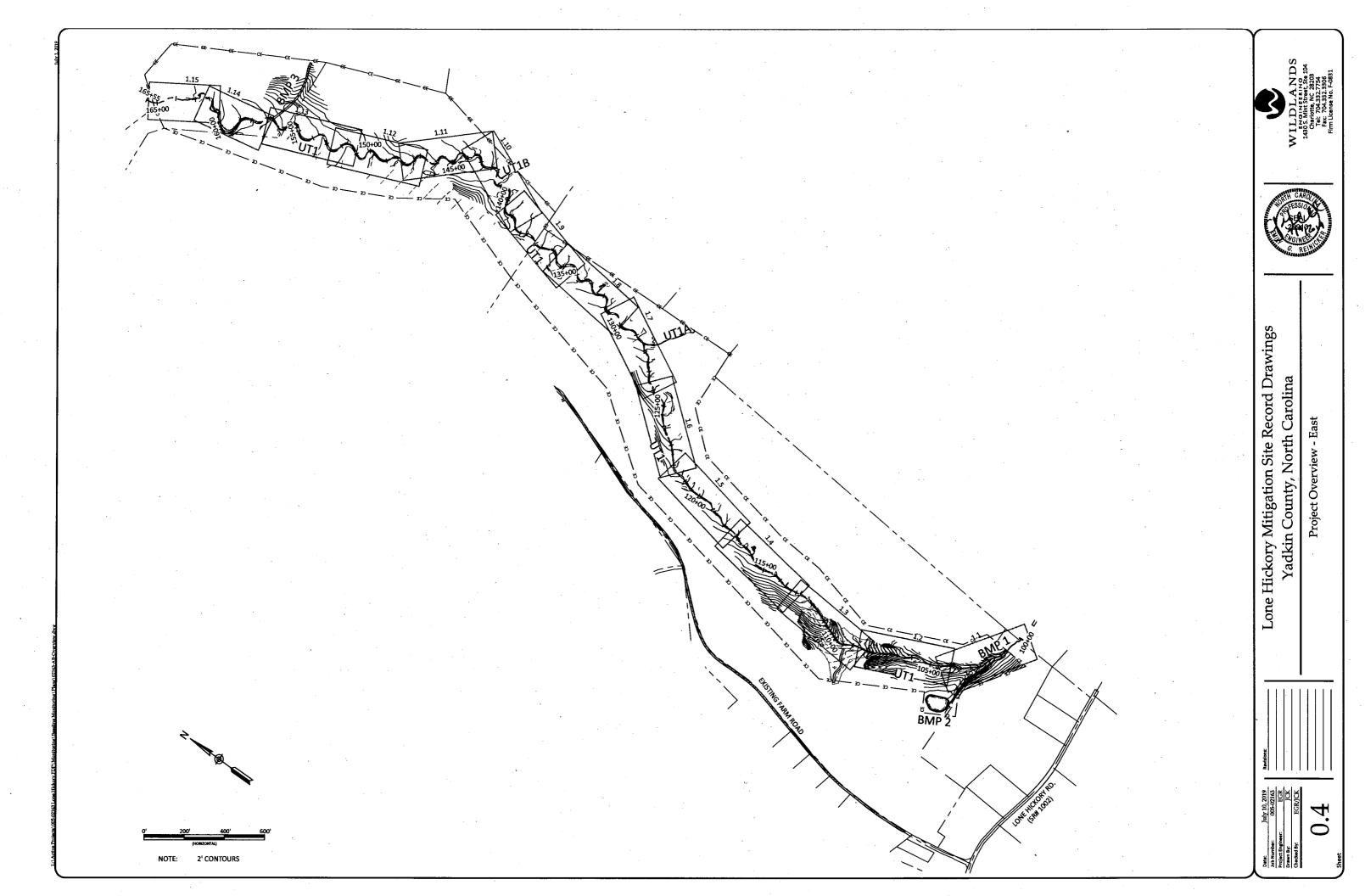
Design Log Sill

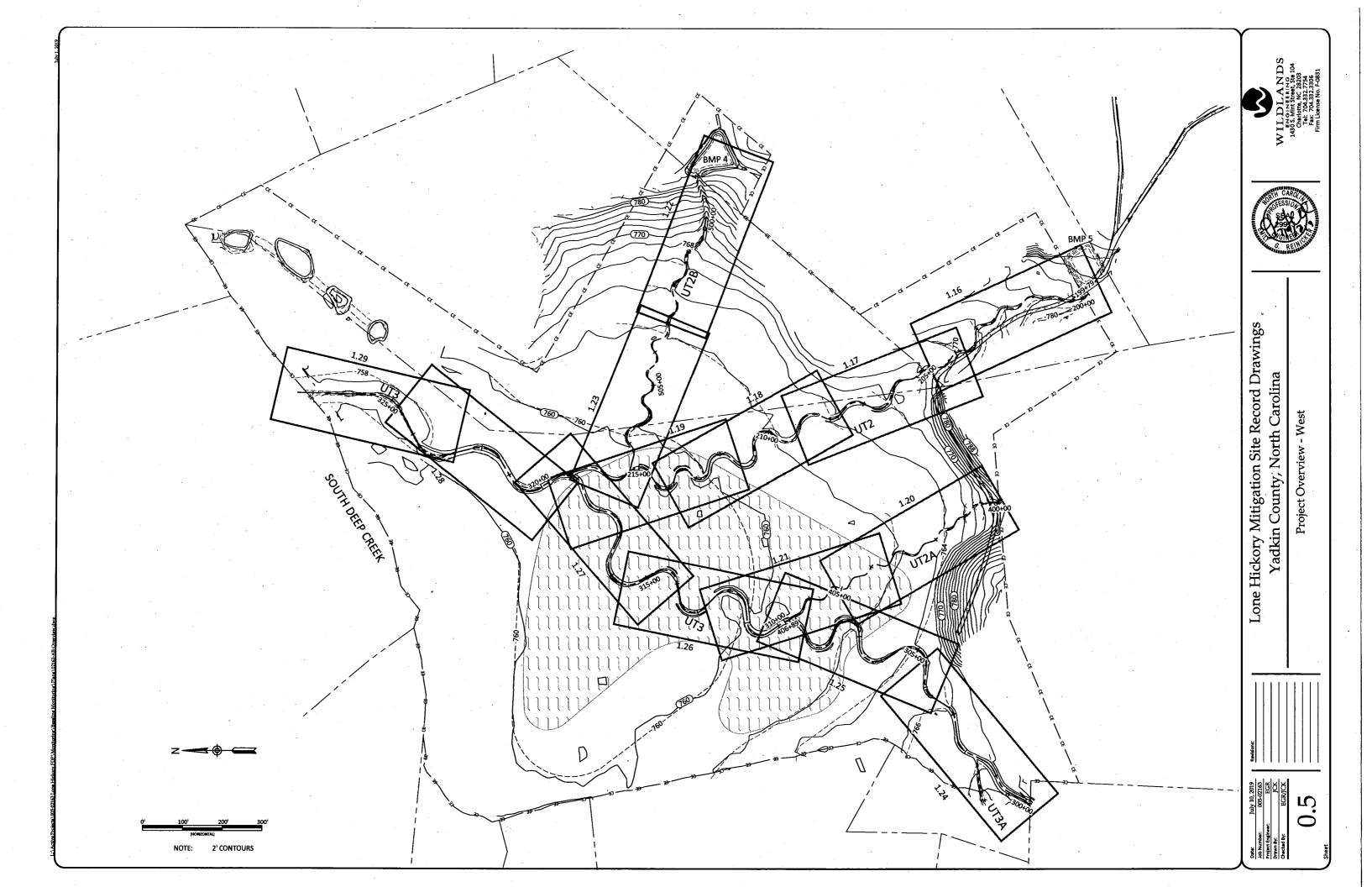
Design Lunker Log

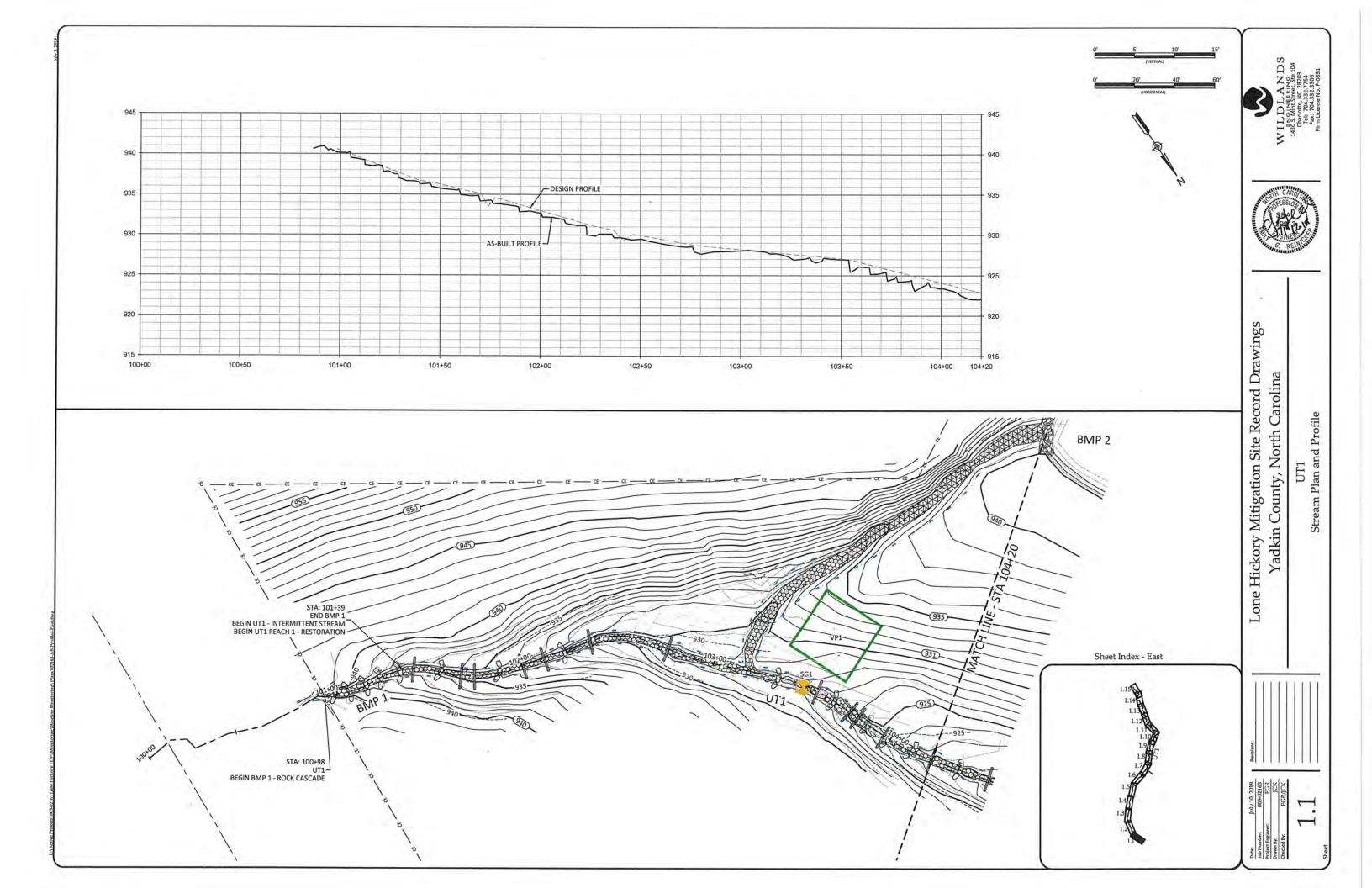
Design Log J-Hook Design Boulder J-Hook

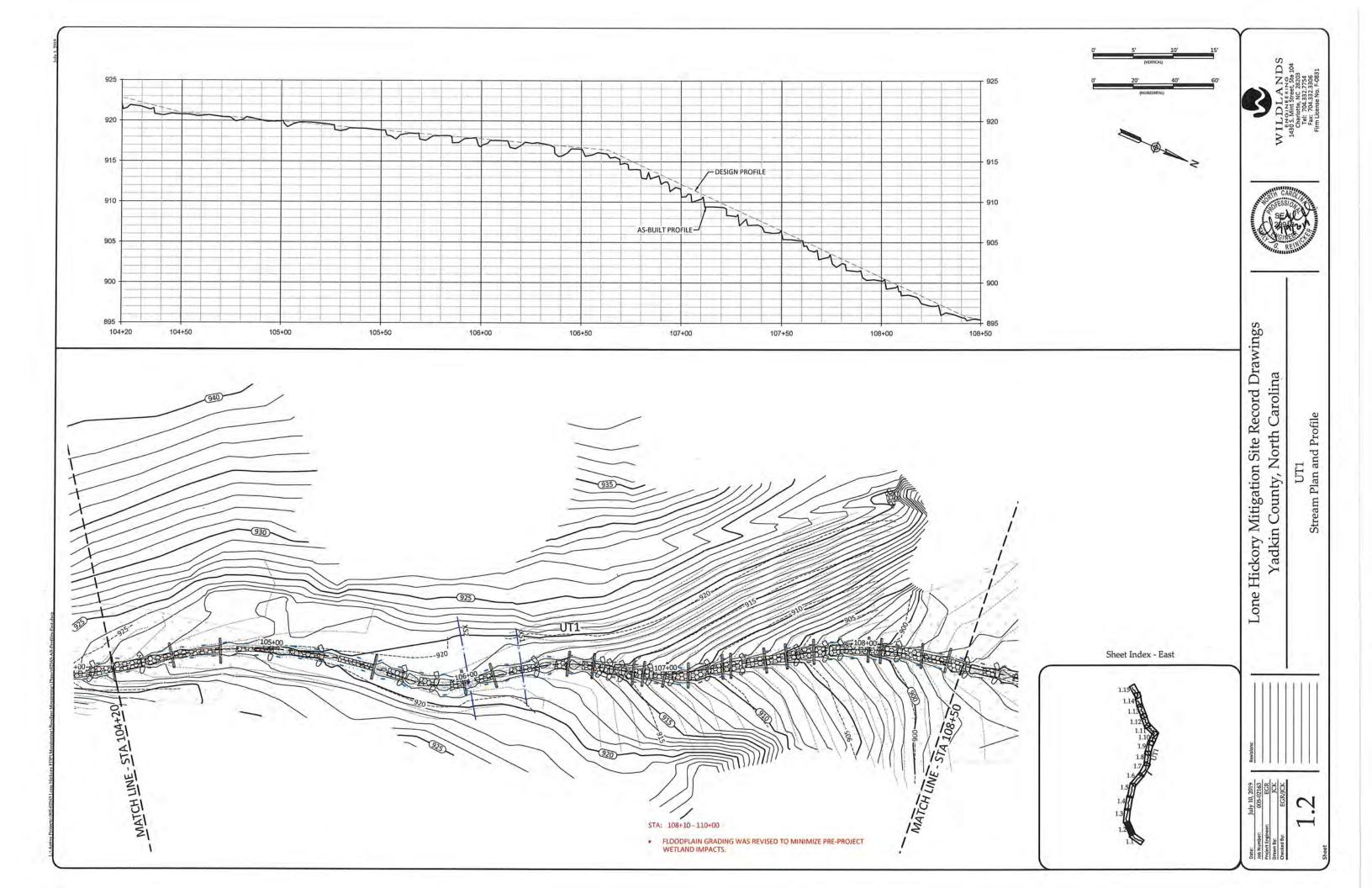
Design Boulder J-Hook with Sill

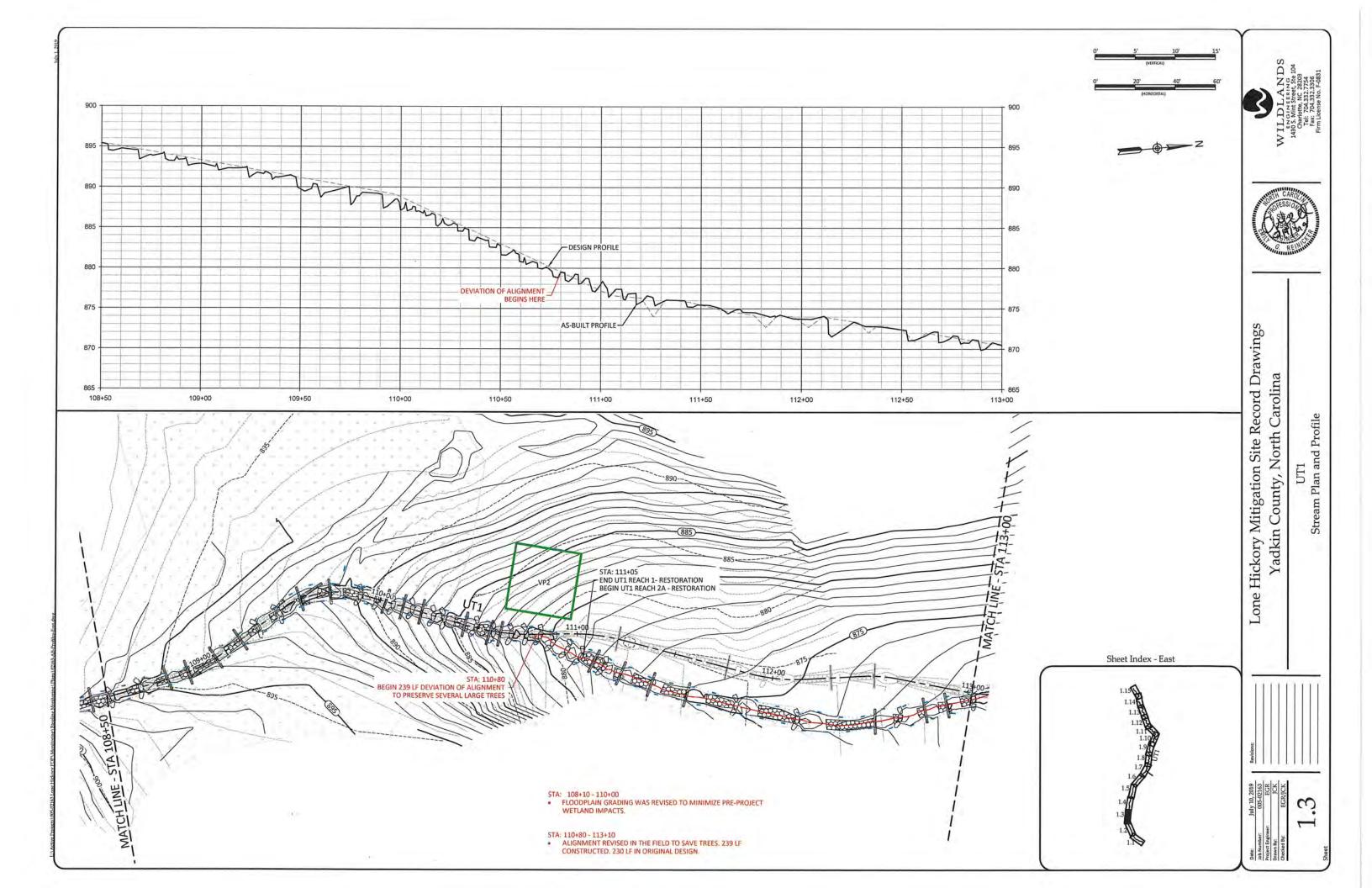

Design Log Vane

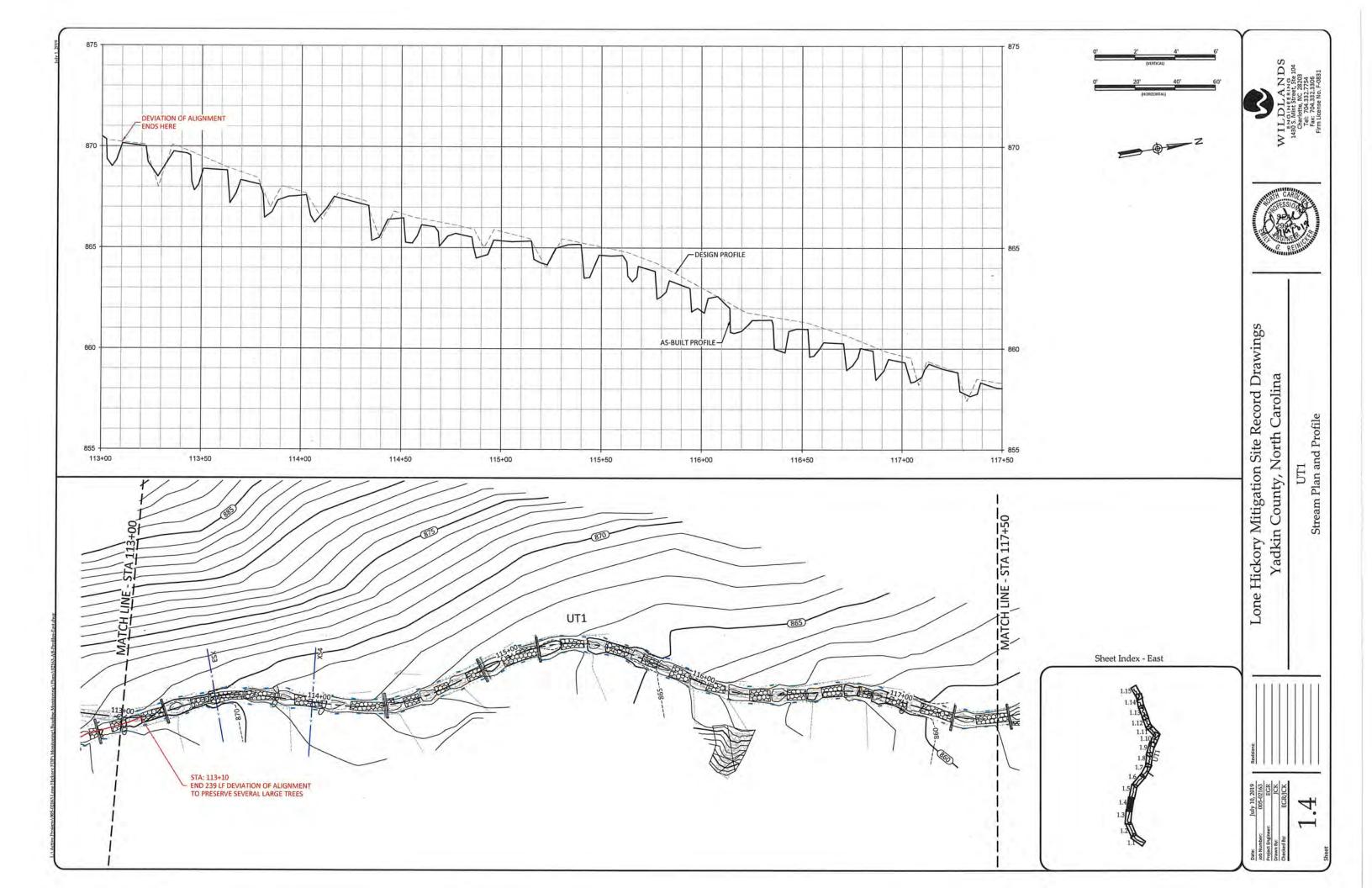

Design Rock Sill

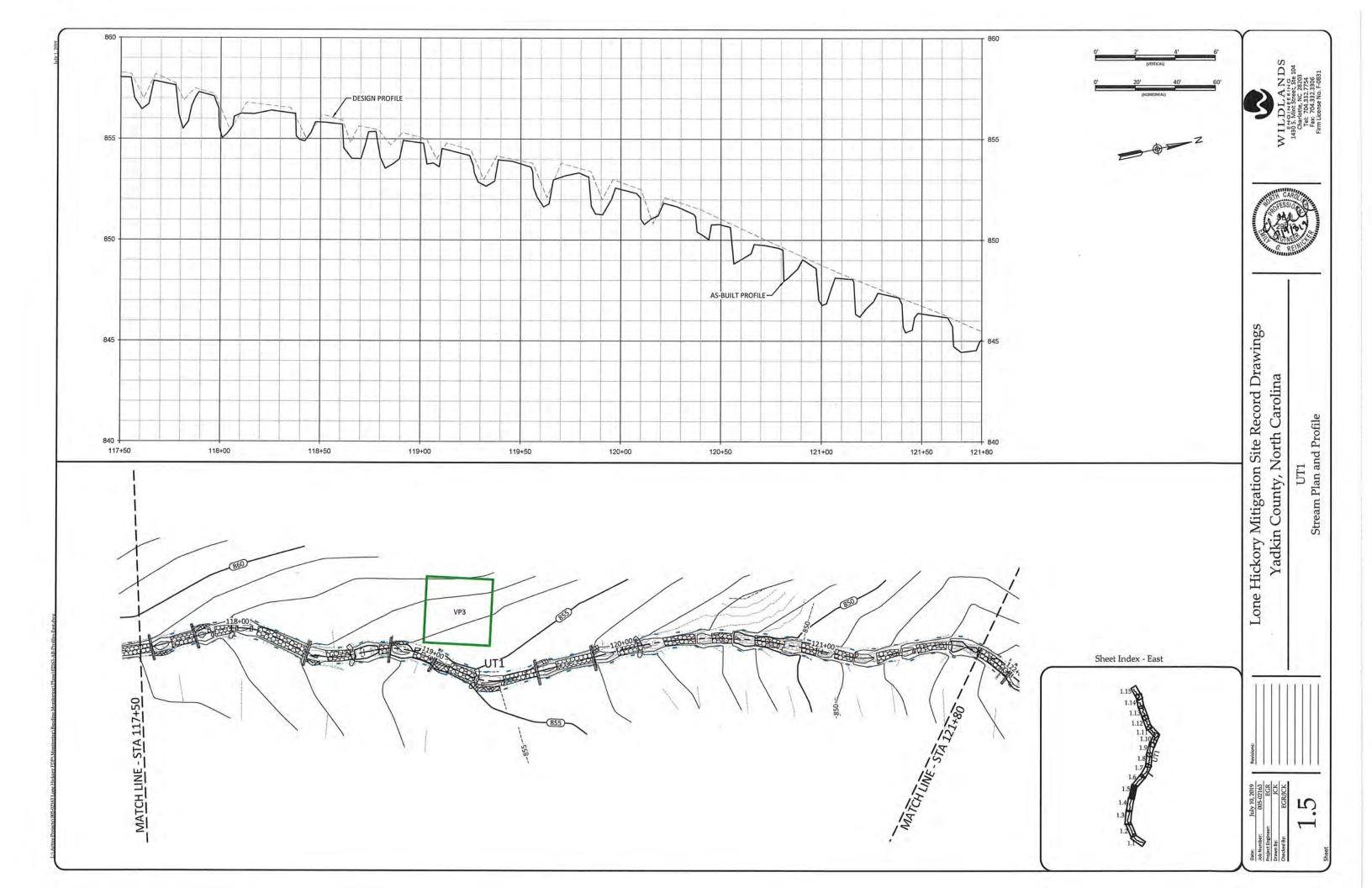

Yadkin County, North Carolina

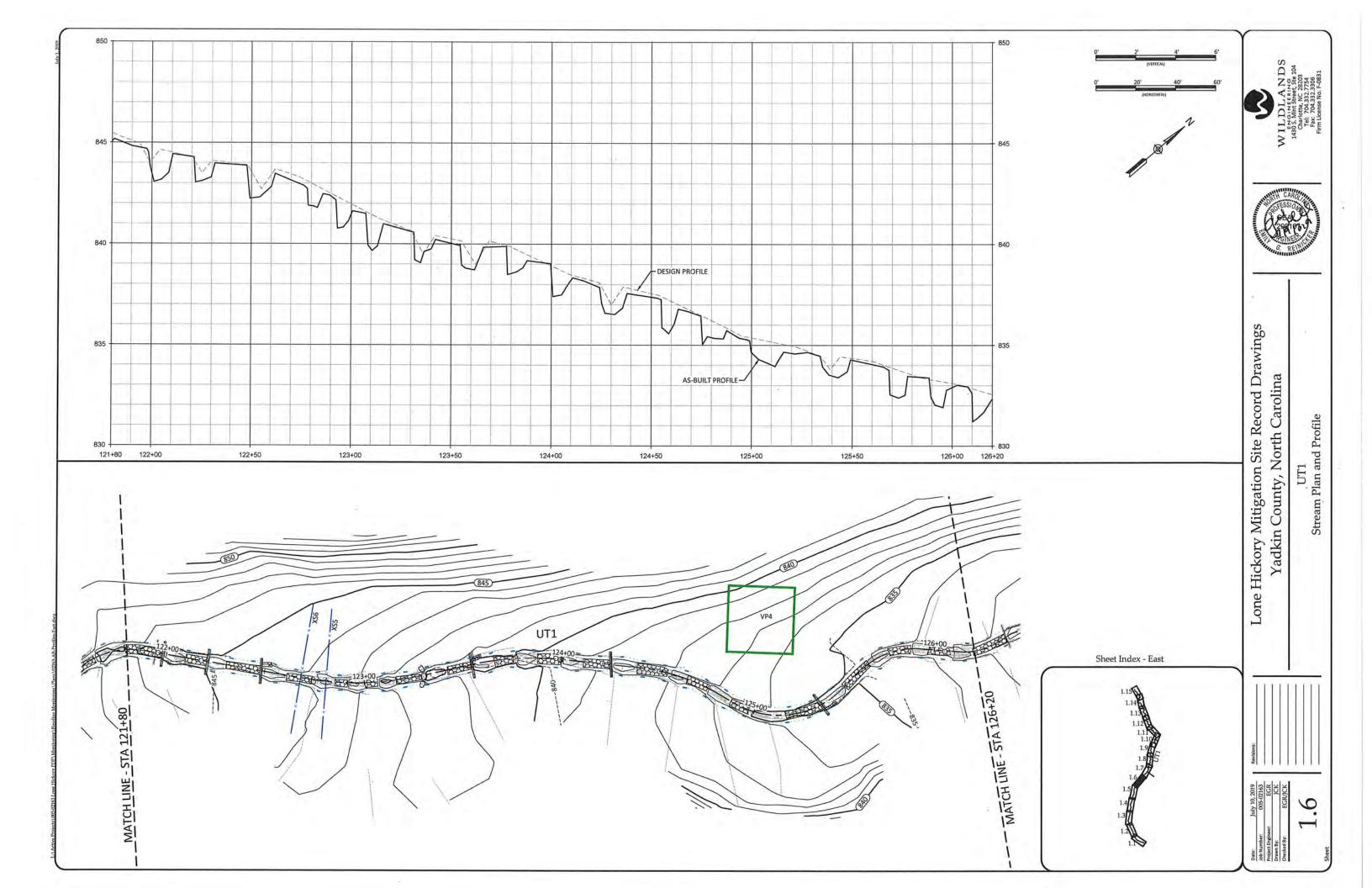

General Notes and Symbols

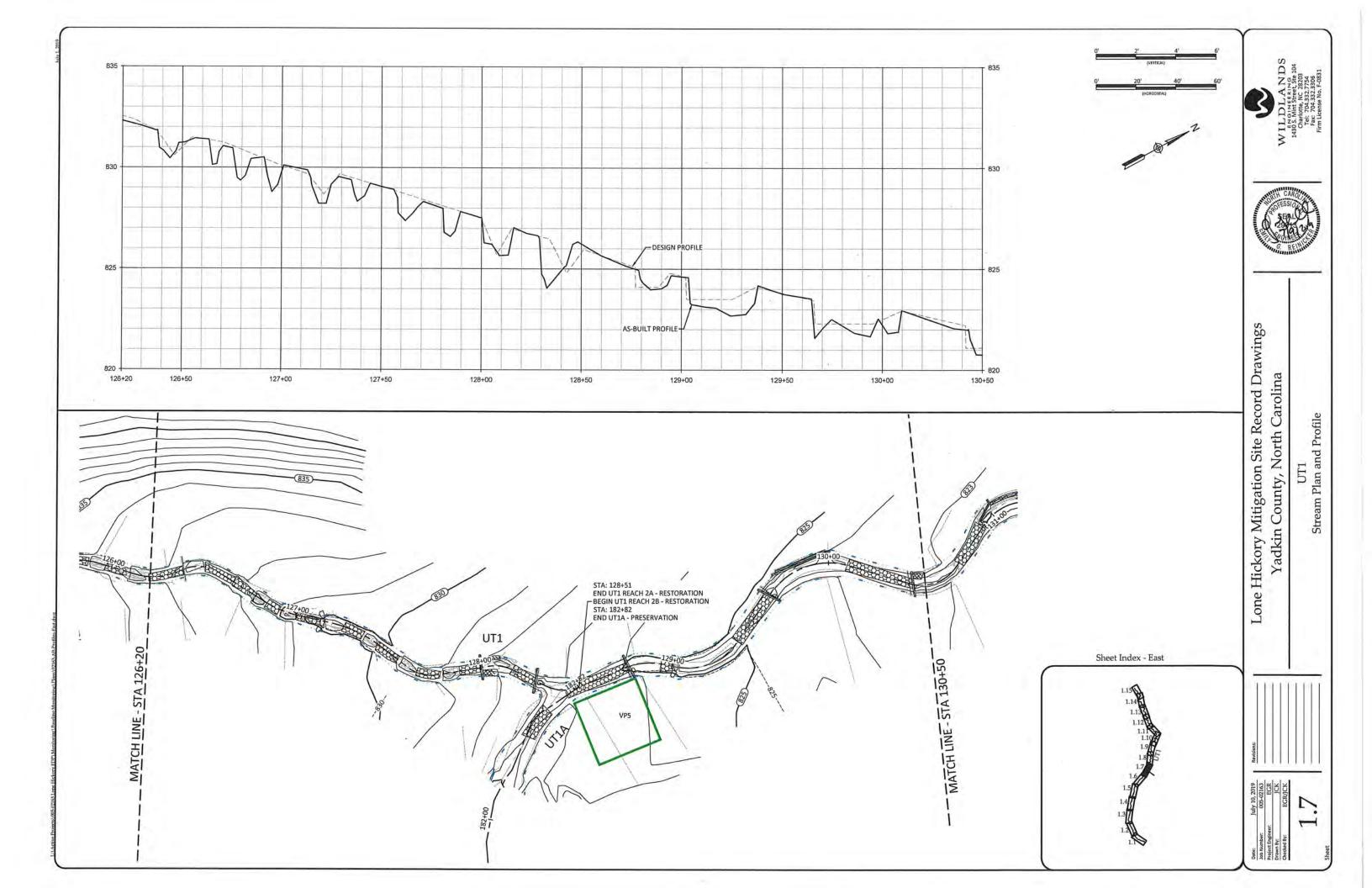

N

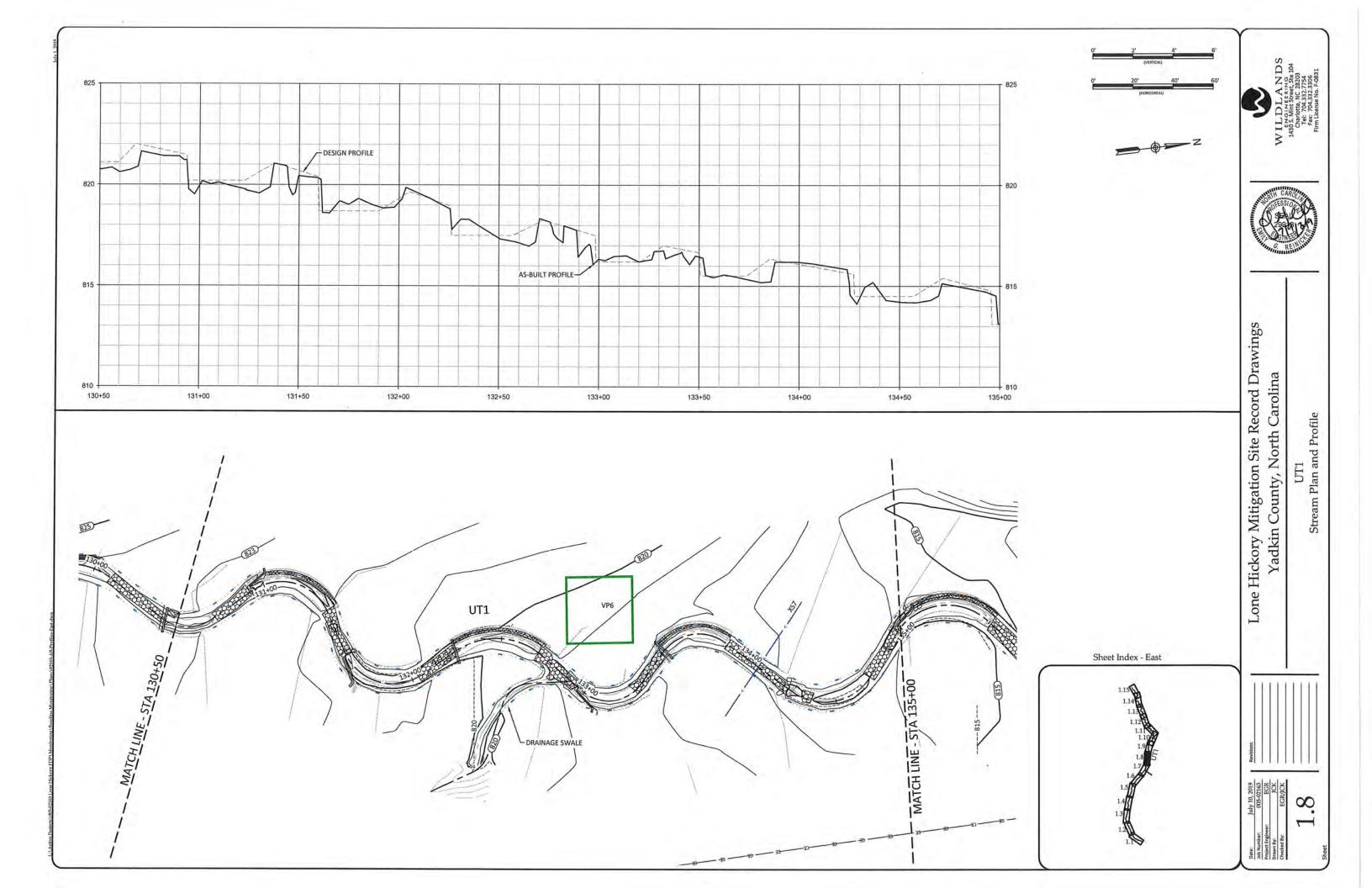


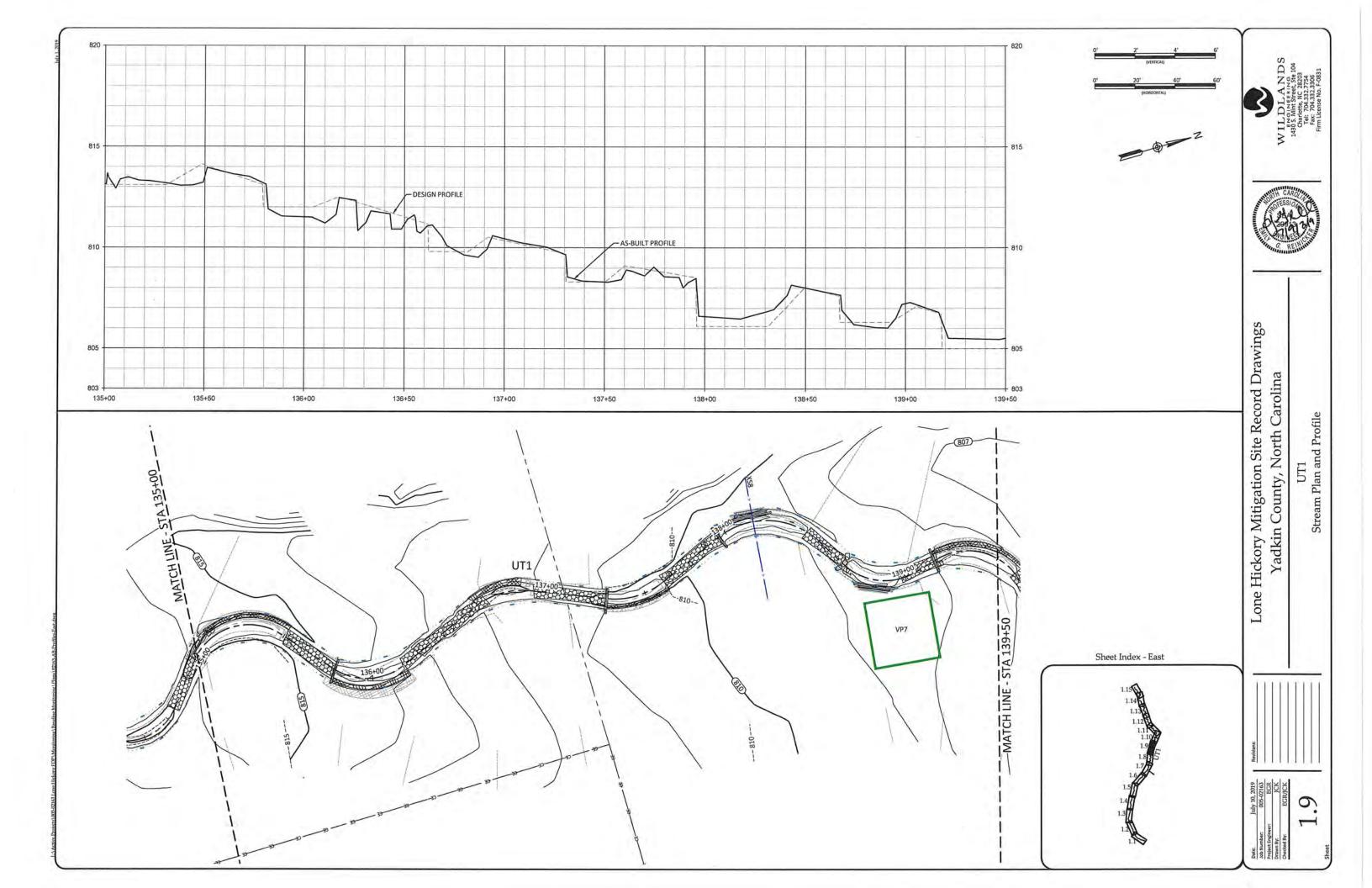


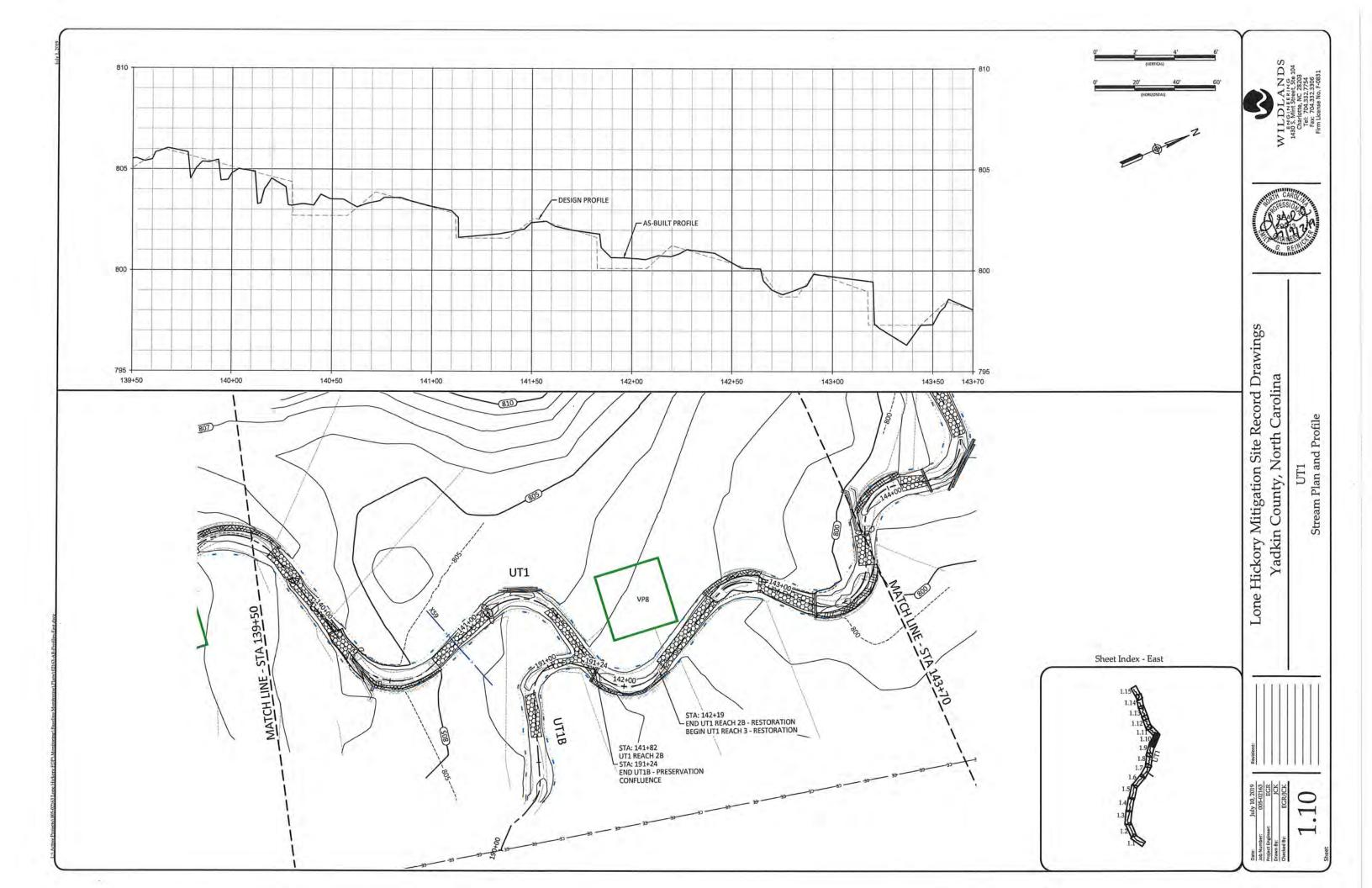


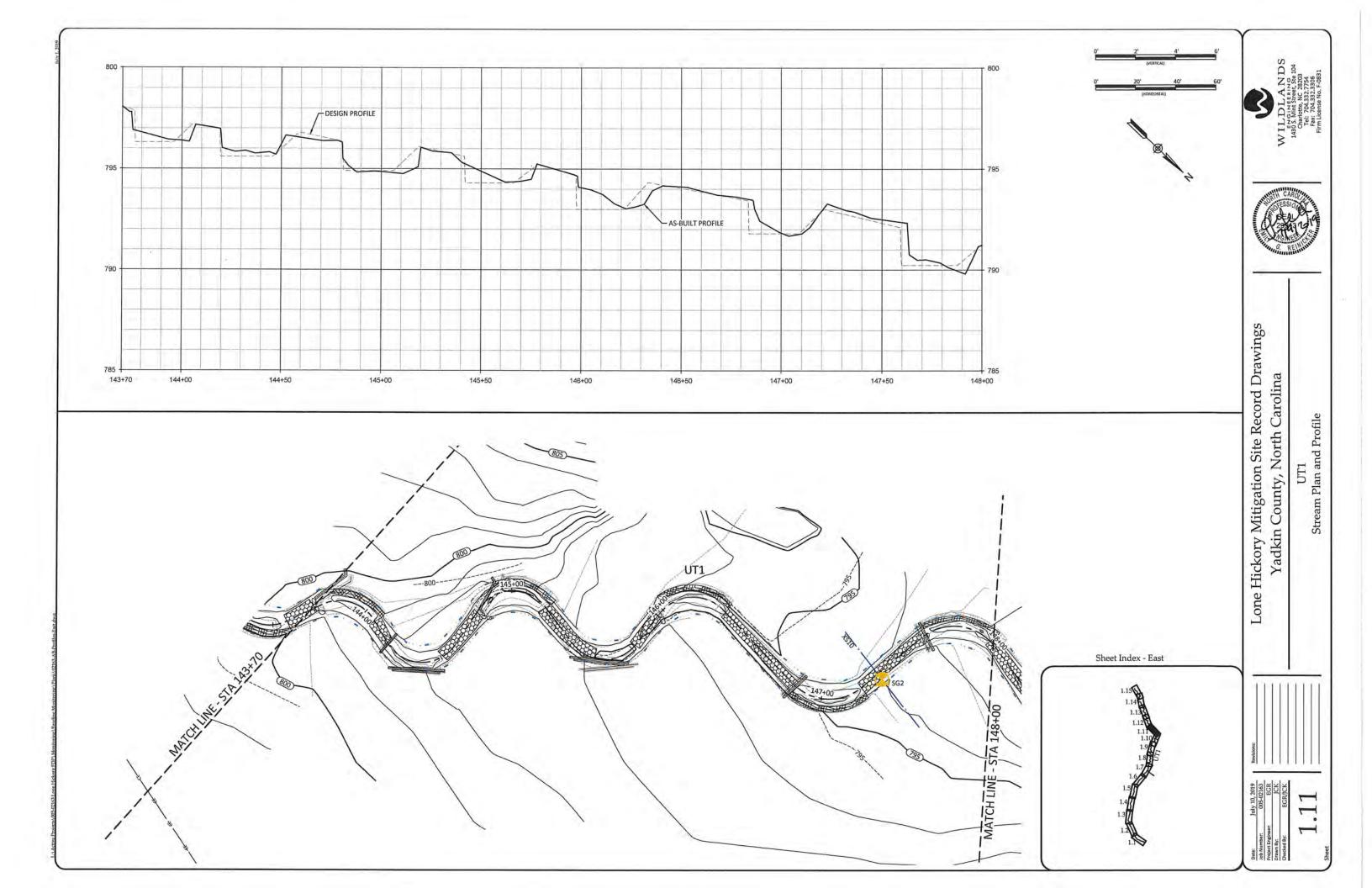


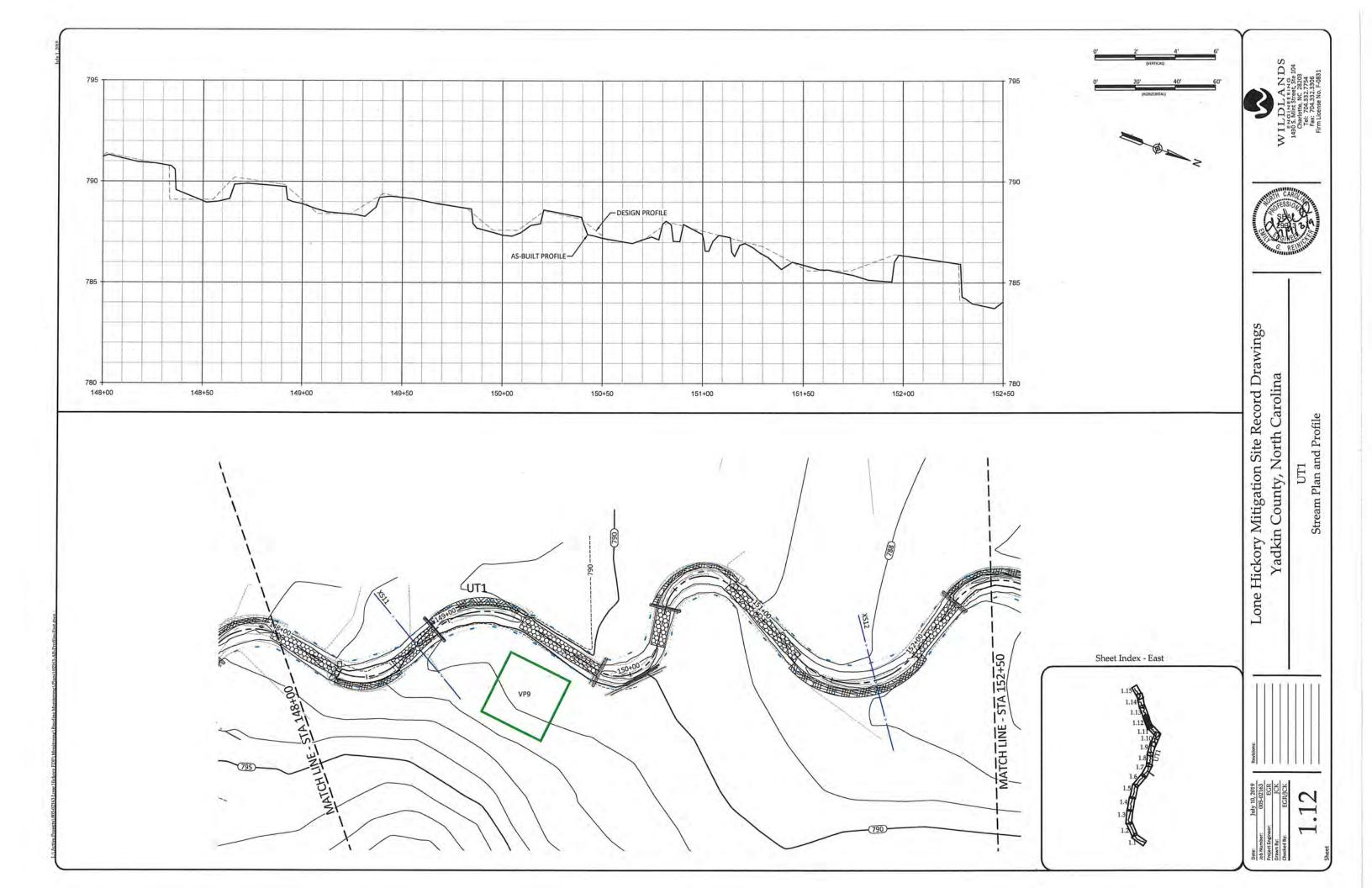


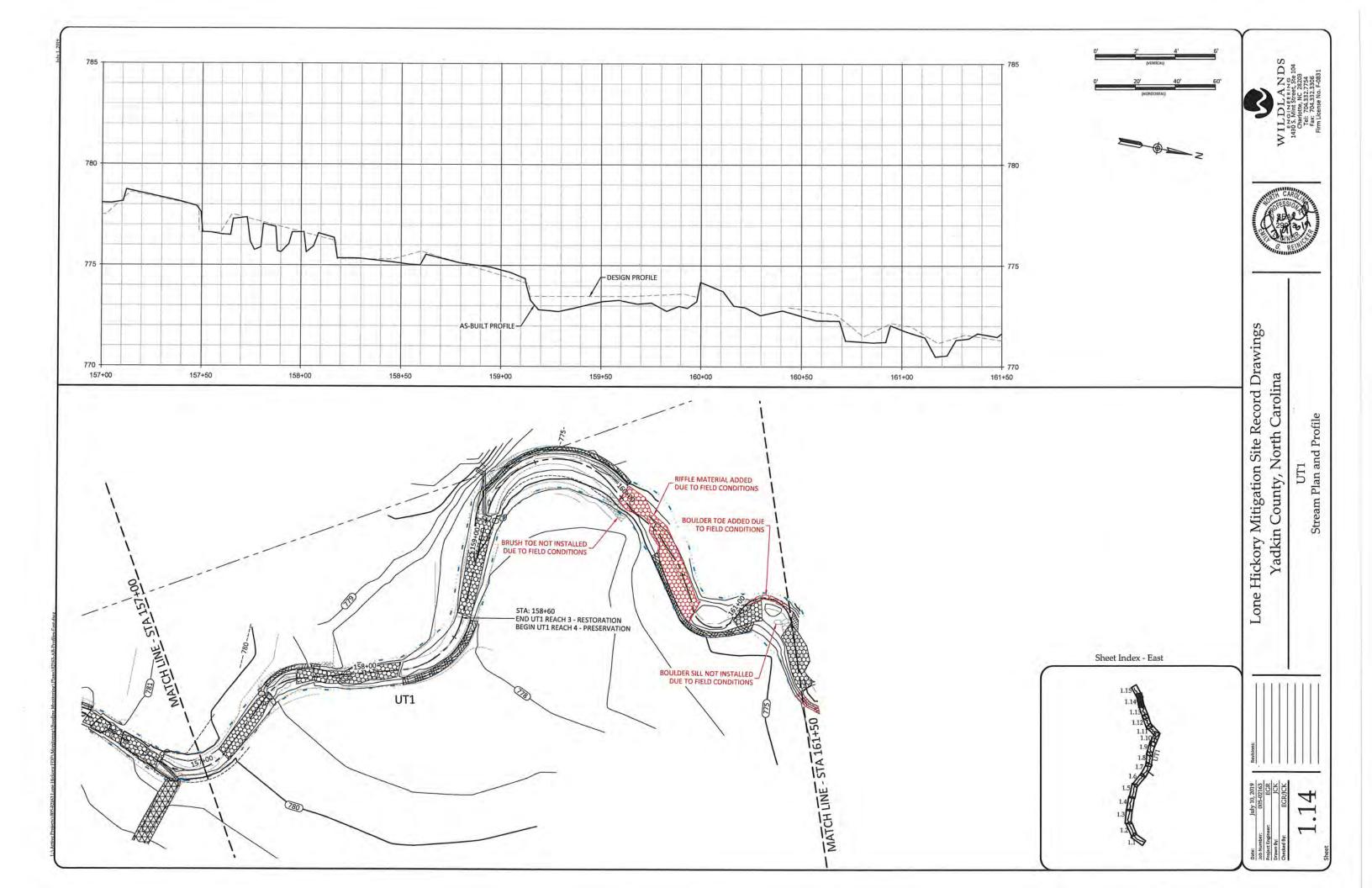


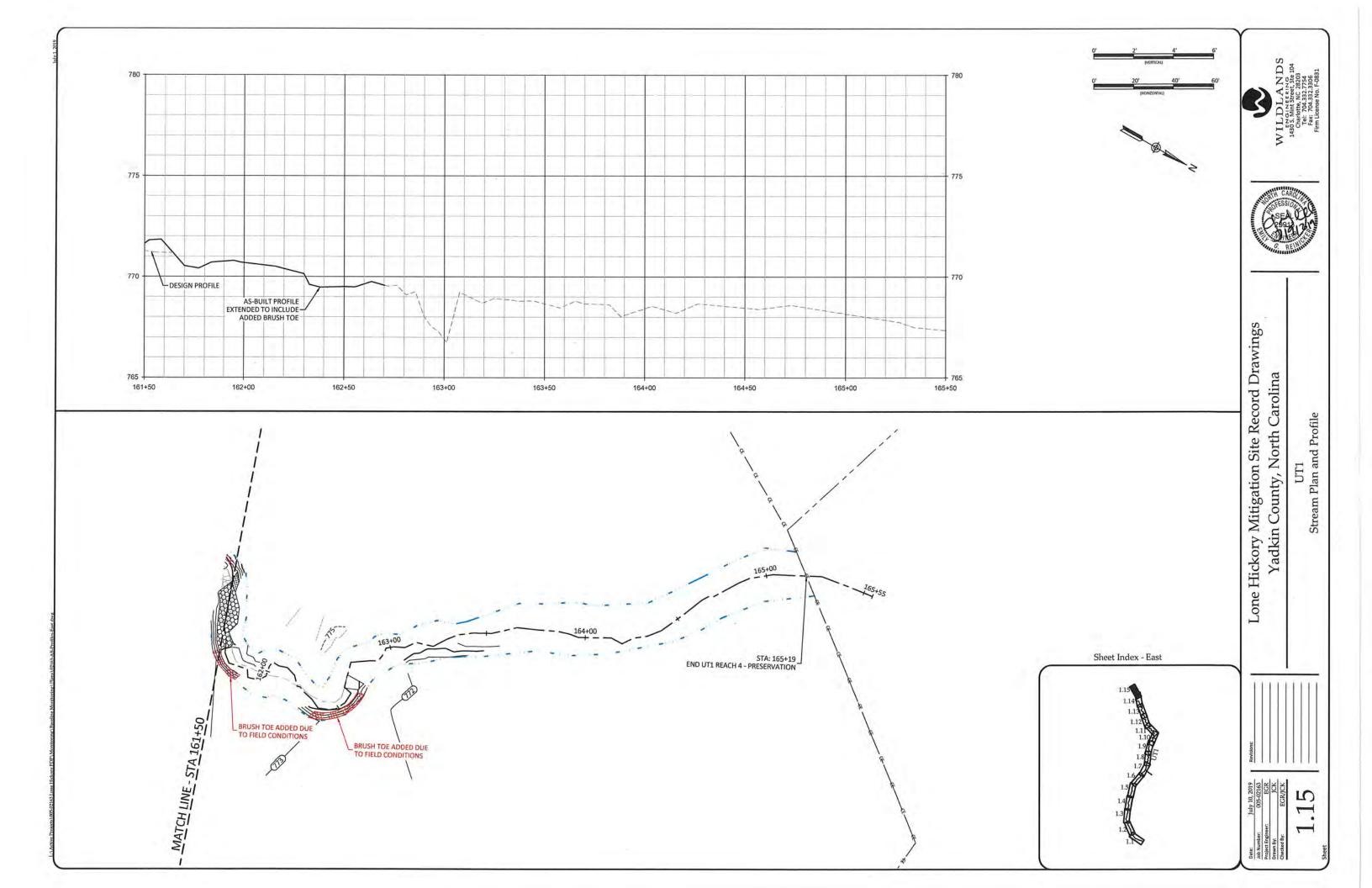


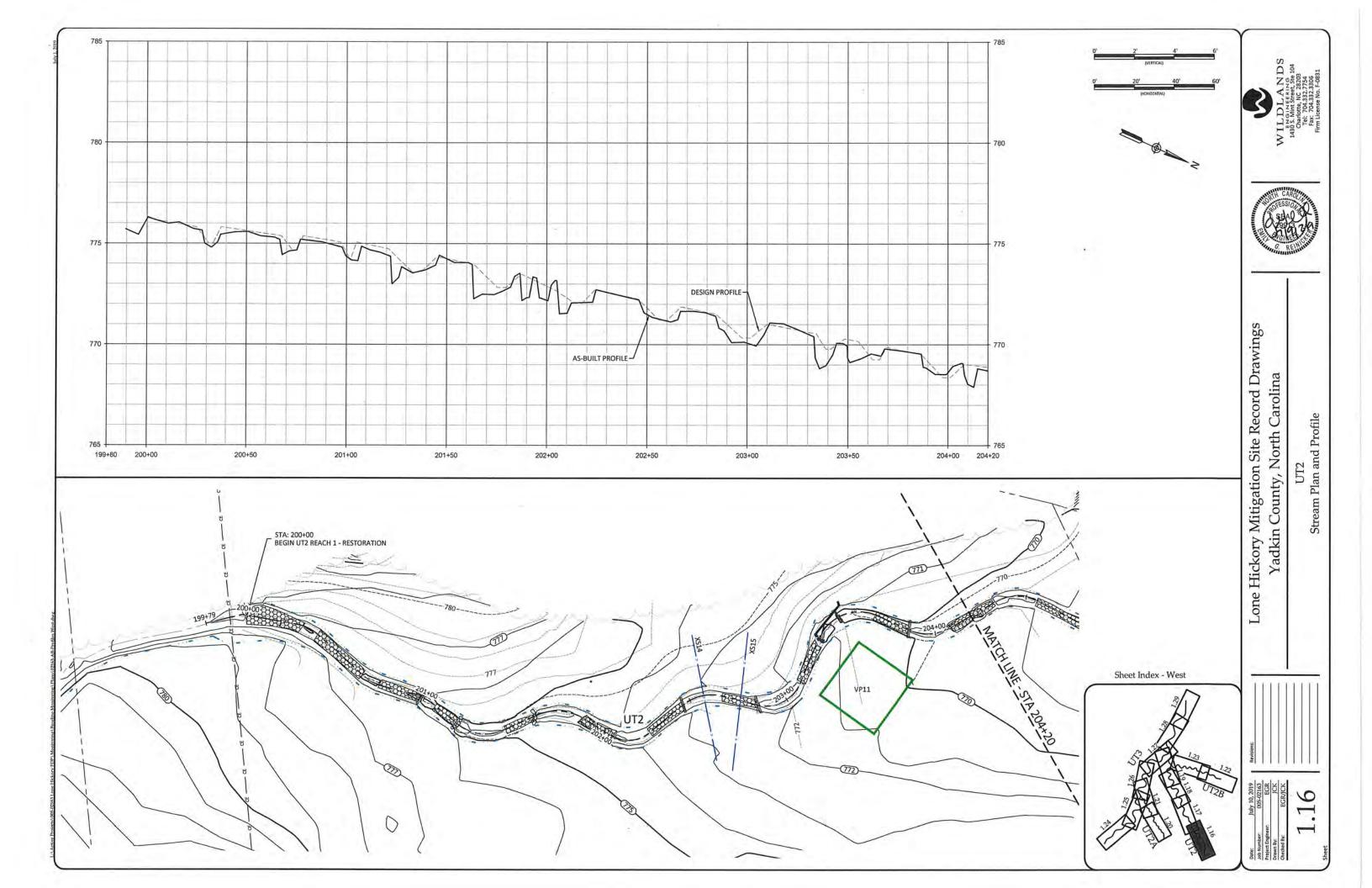


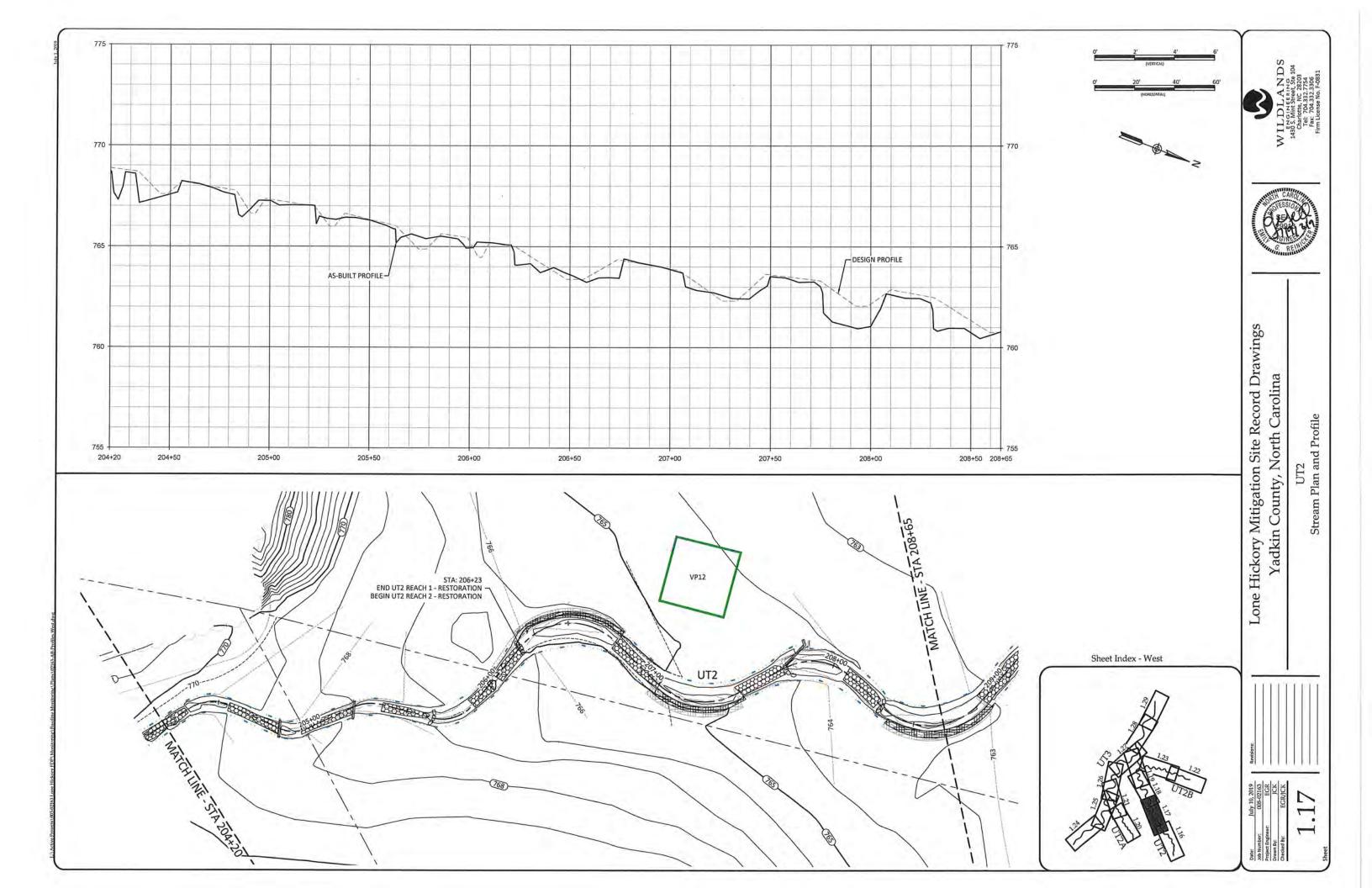


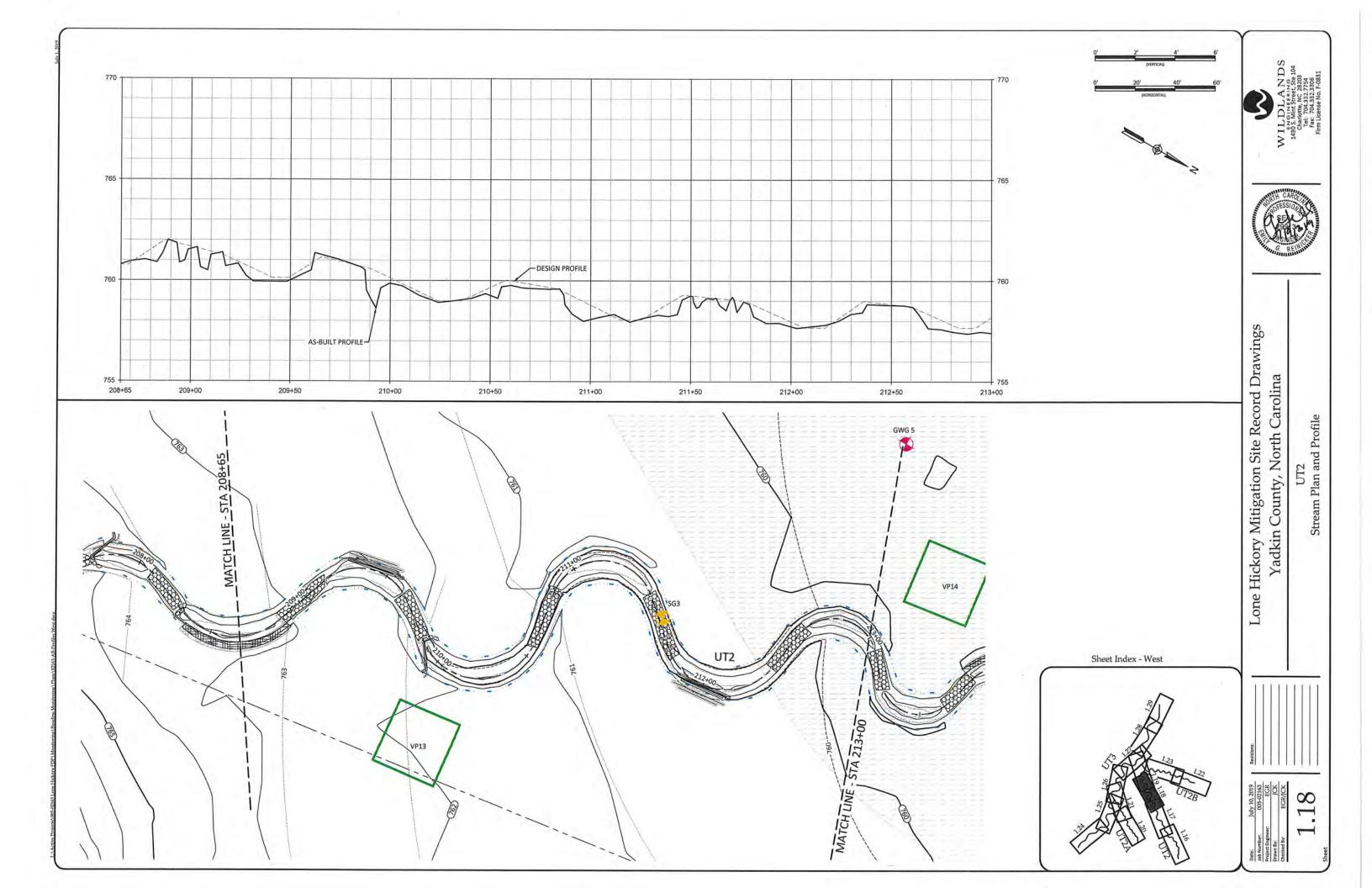


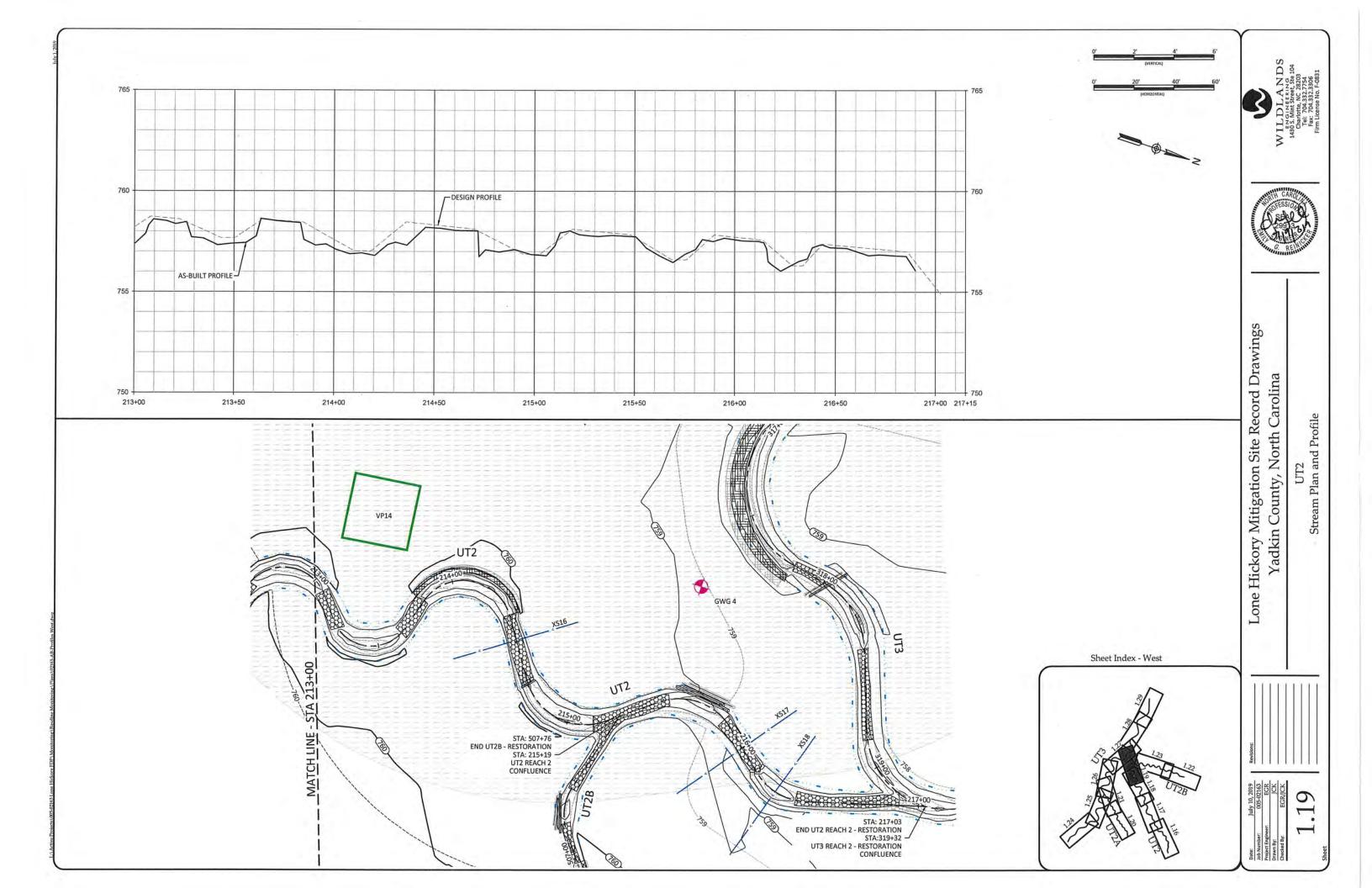


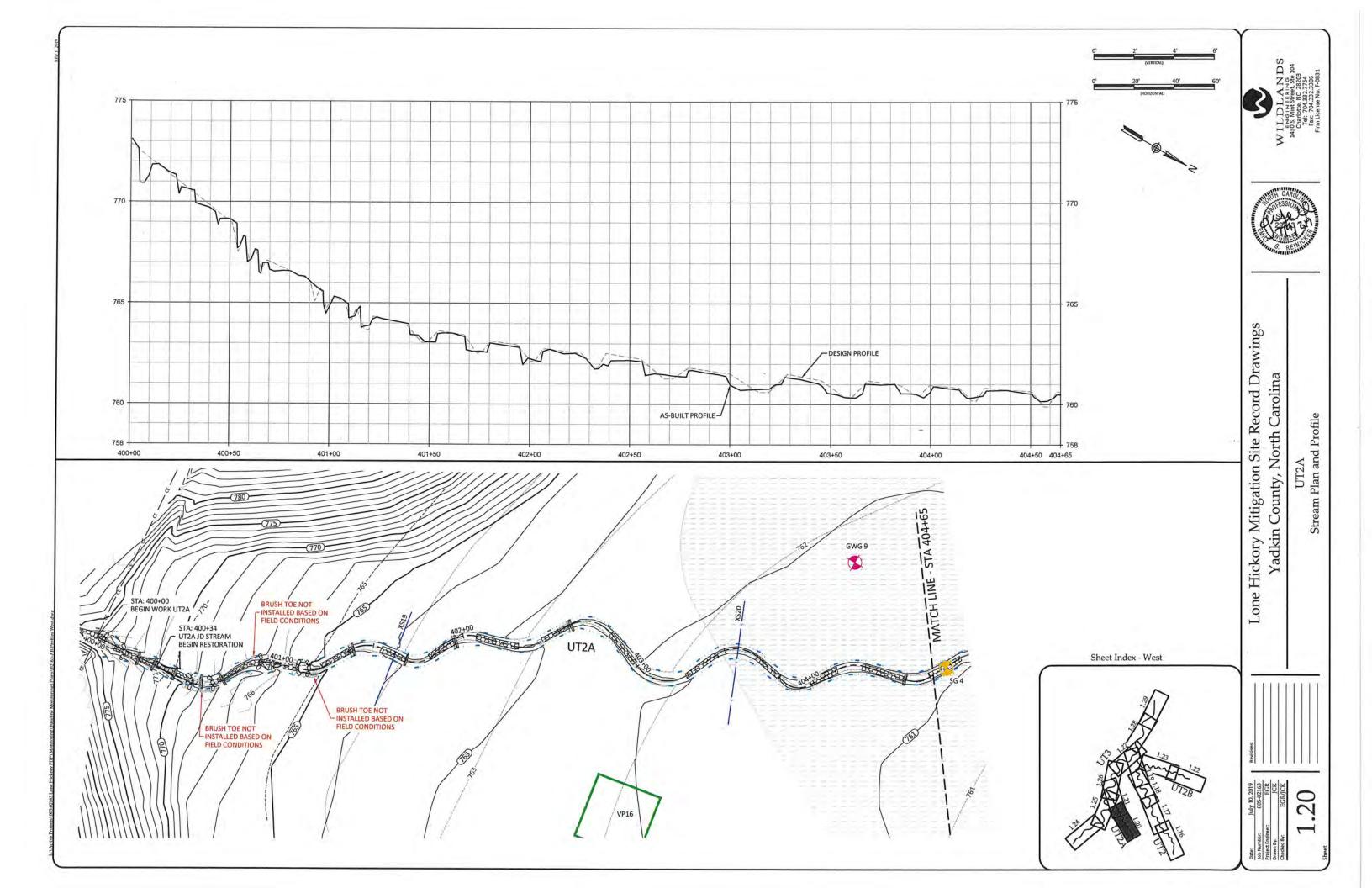


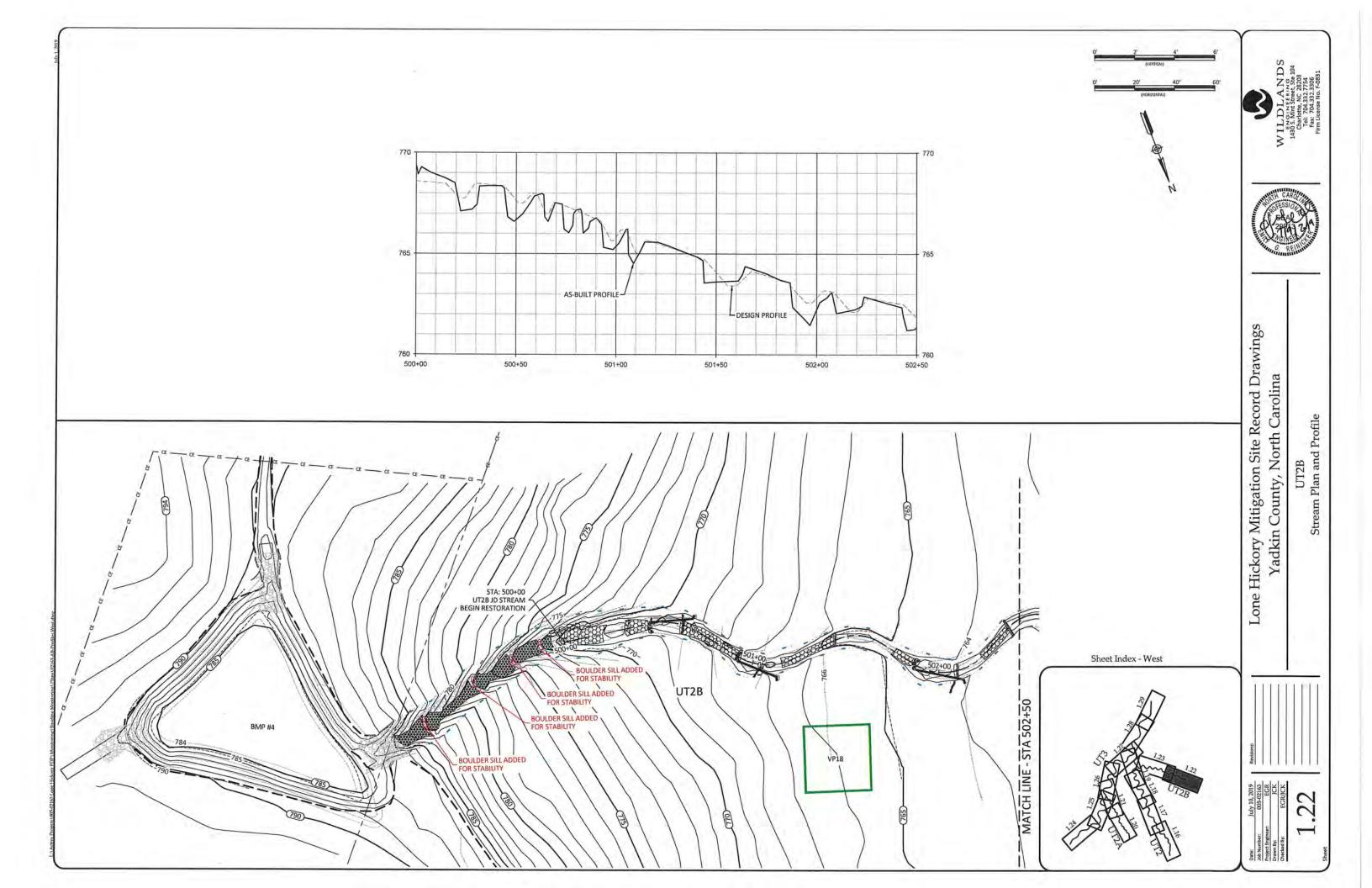




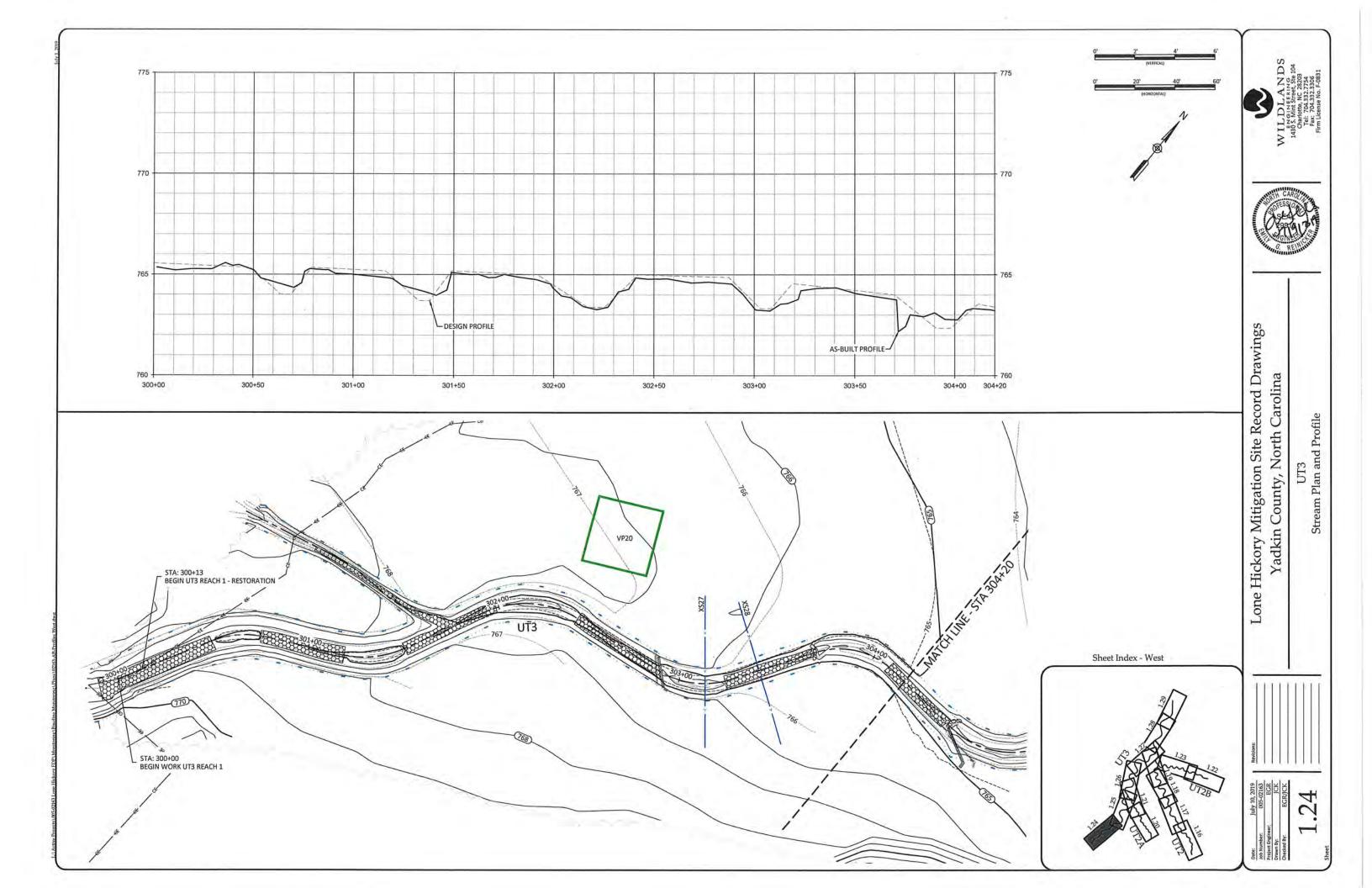


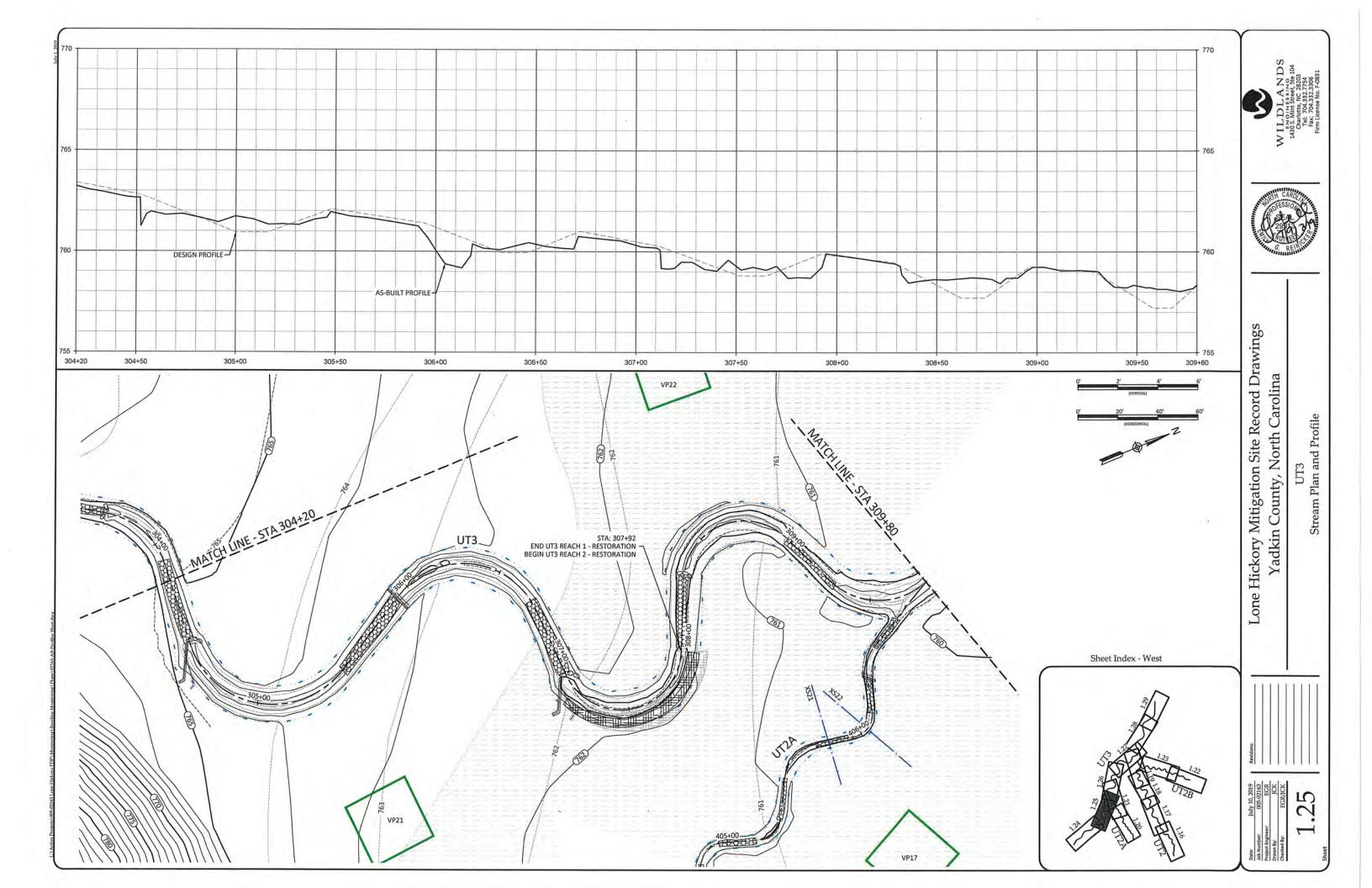


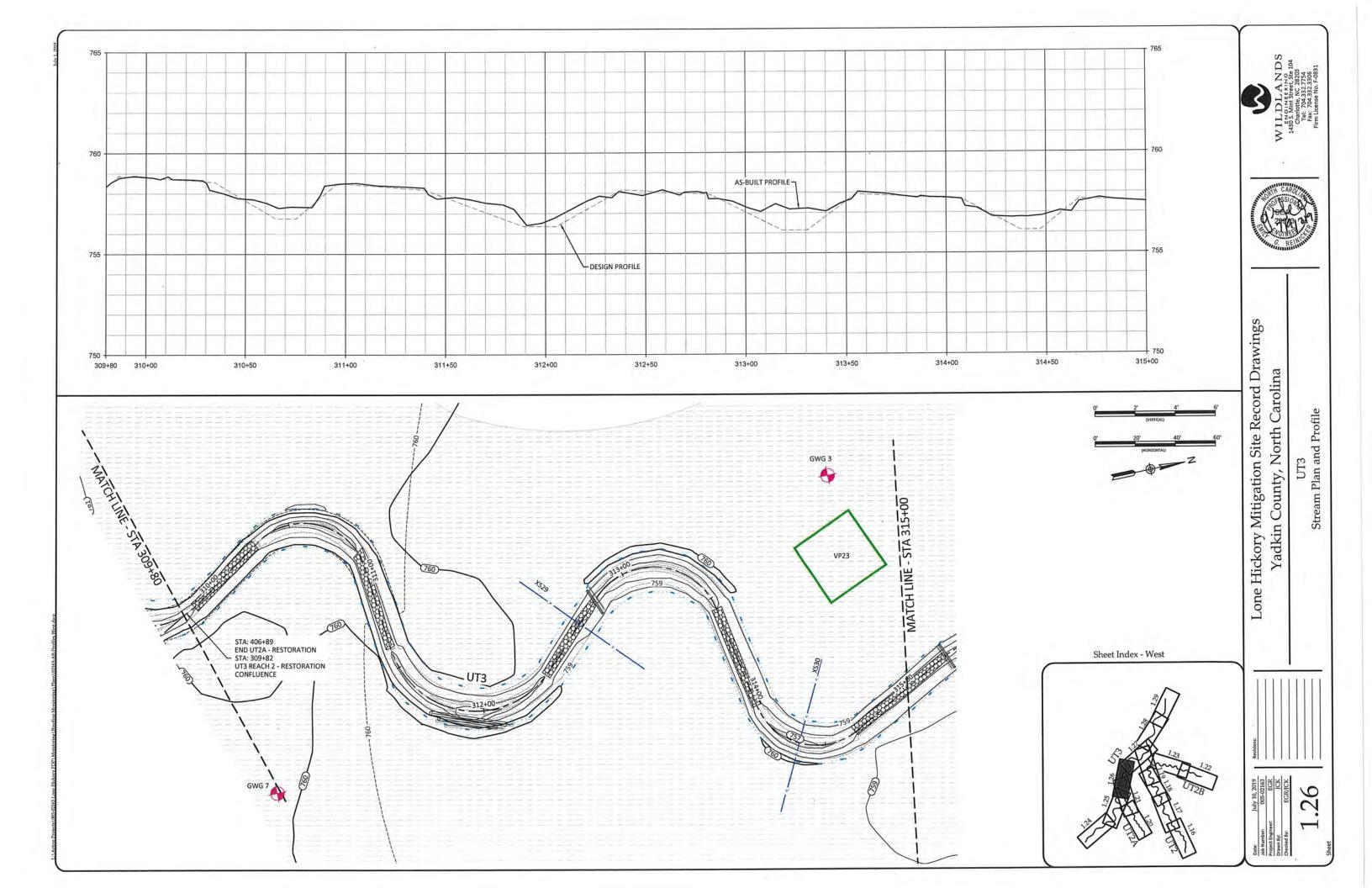


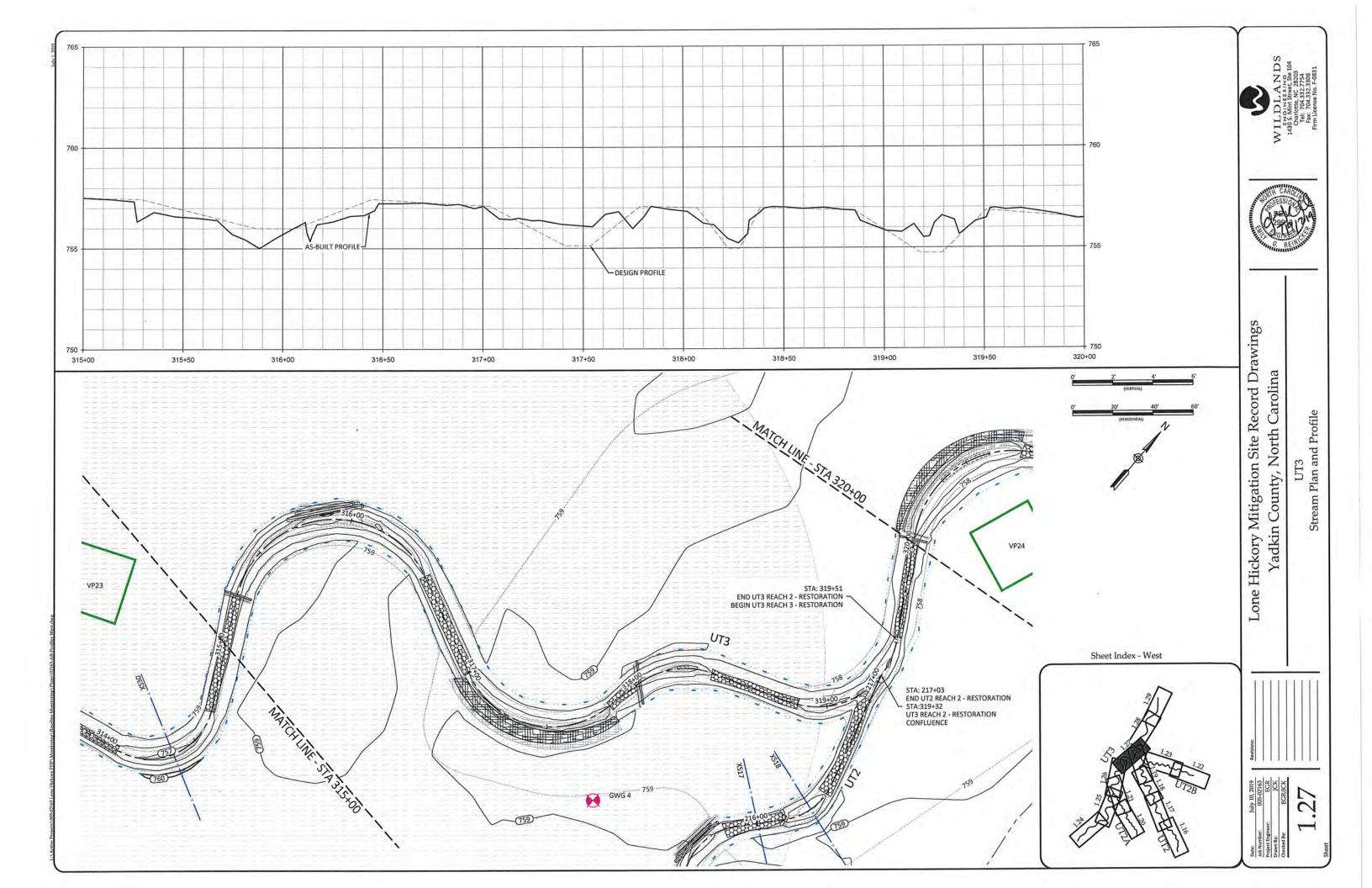


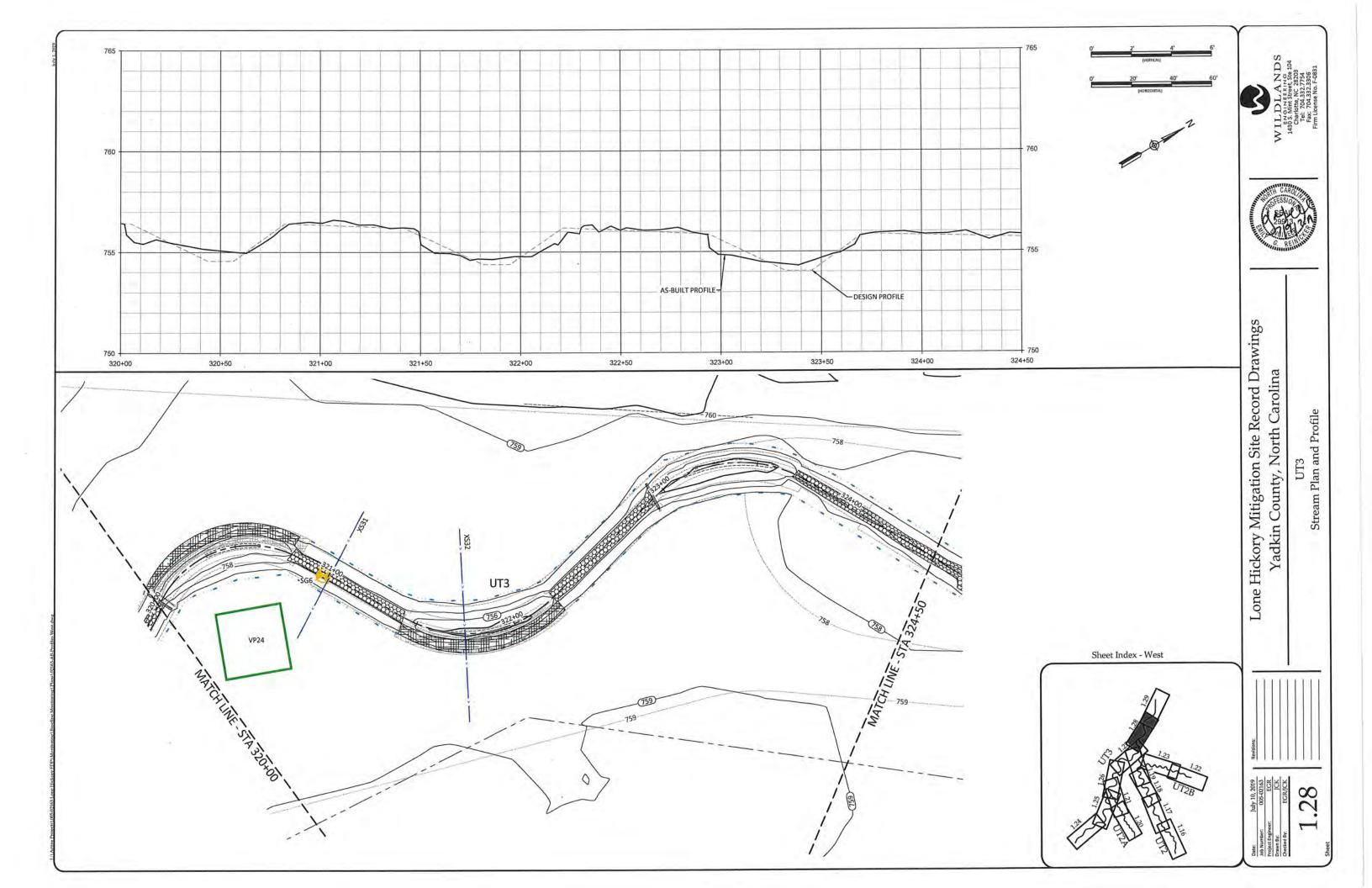


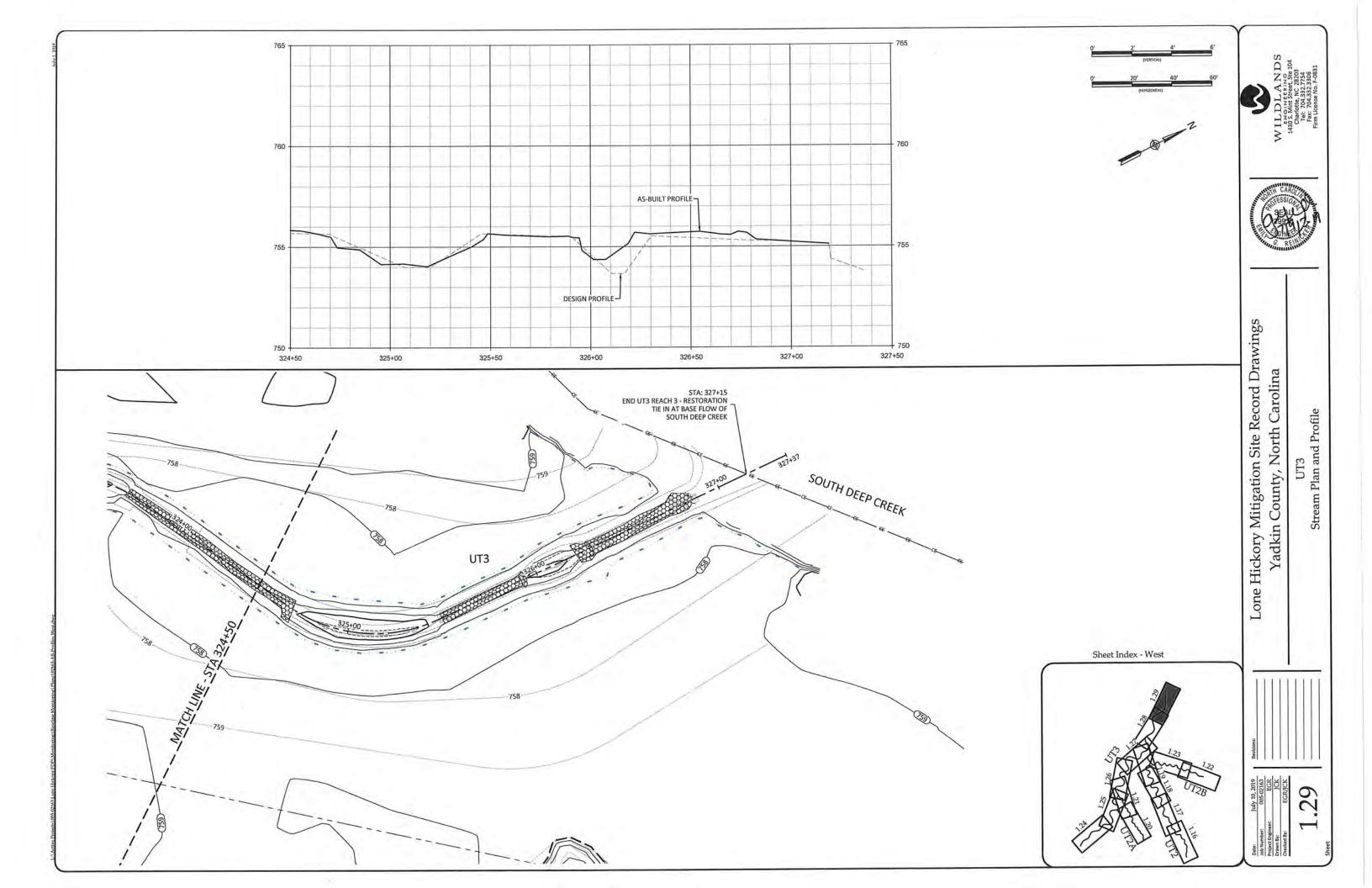


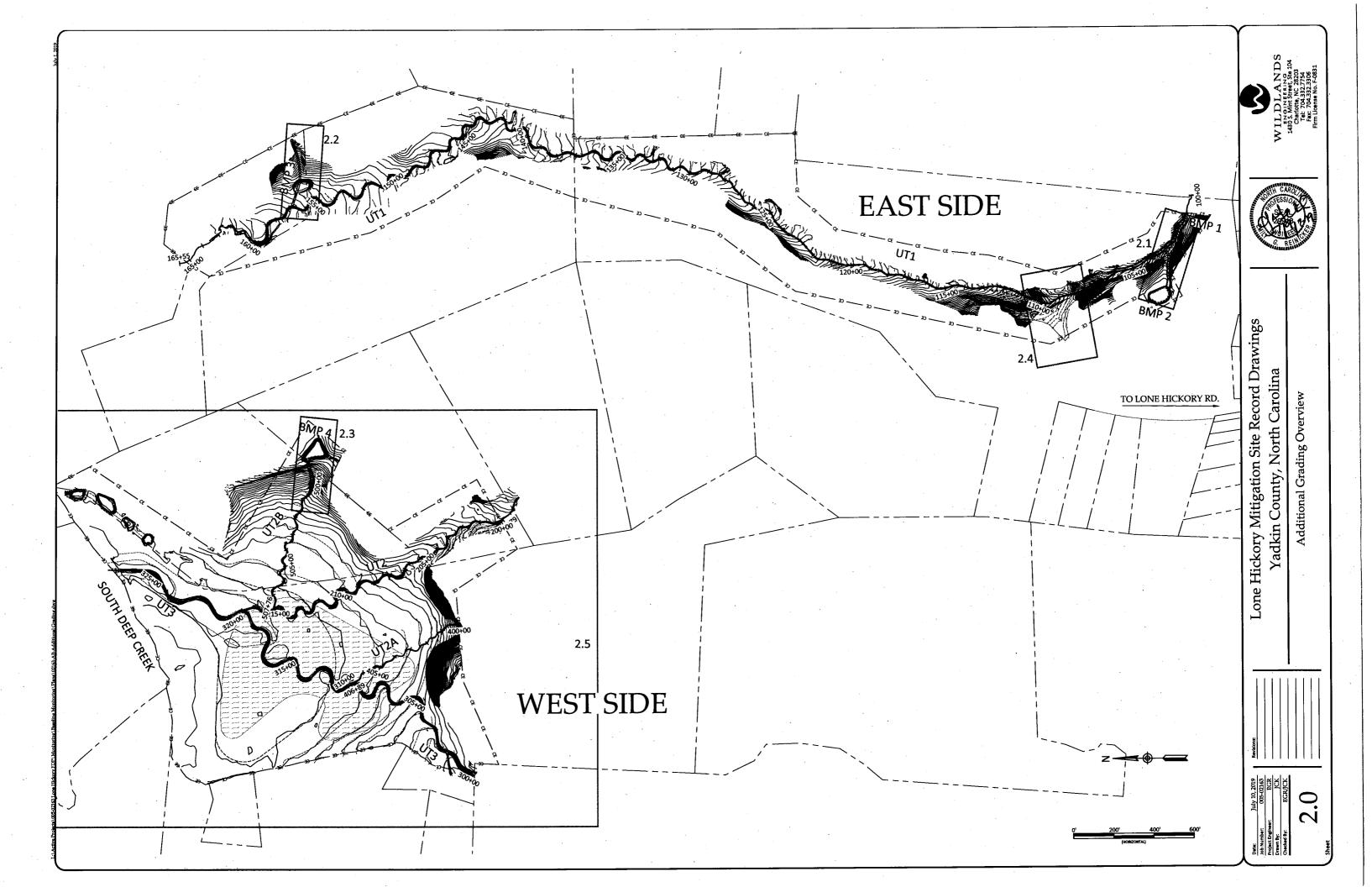


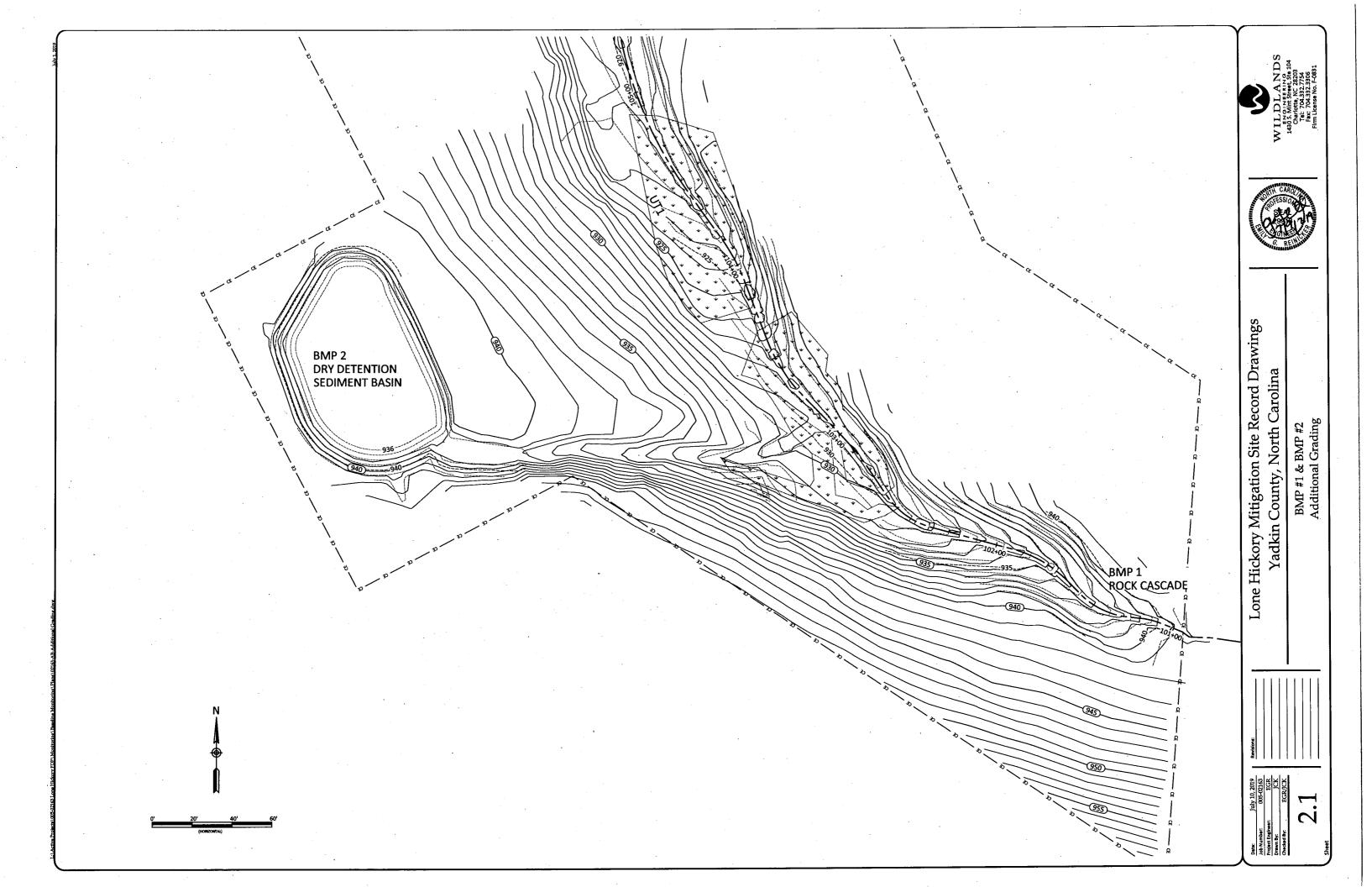


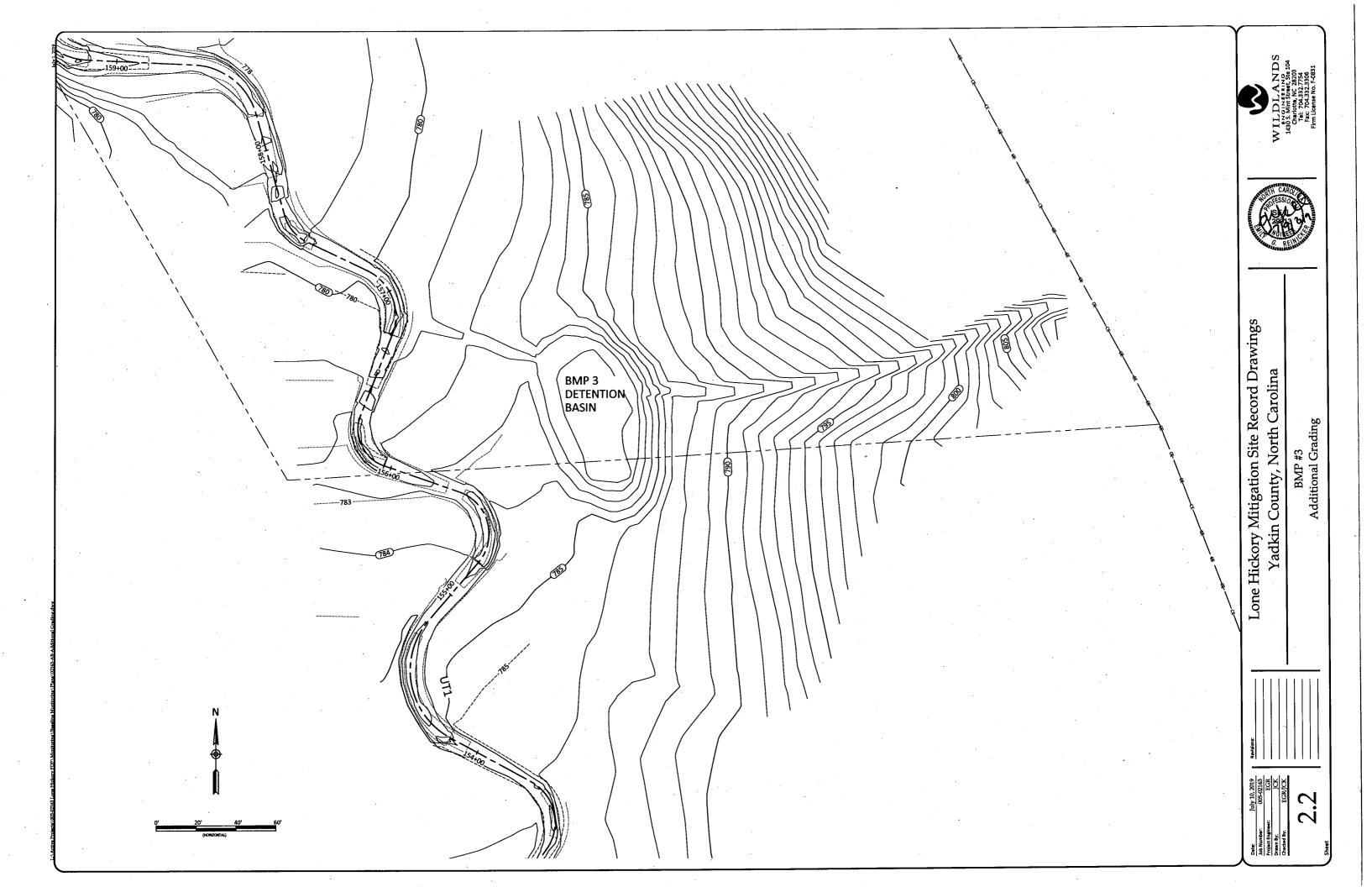


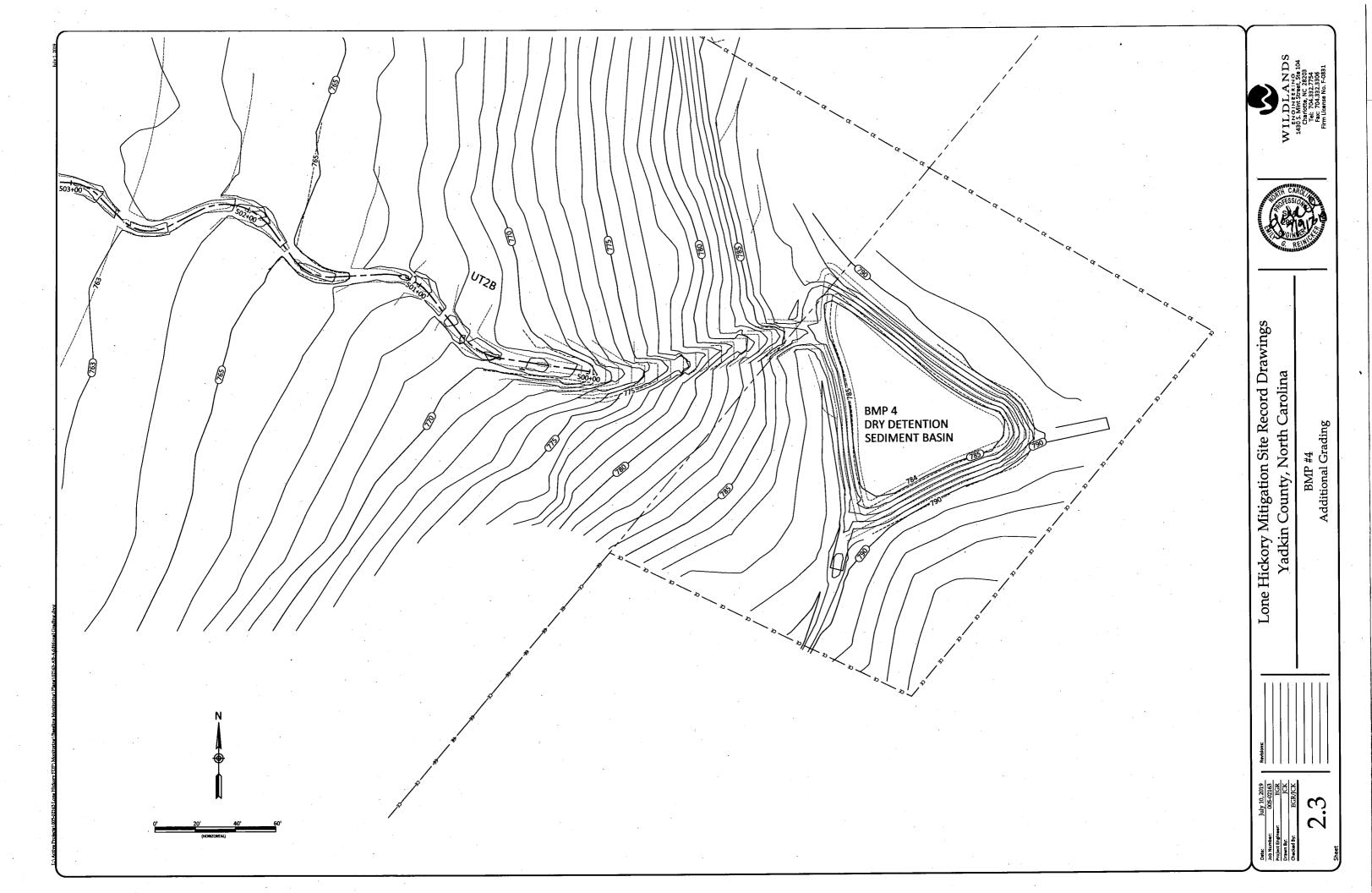


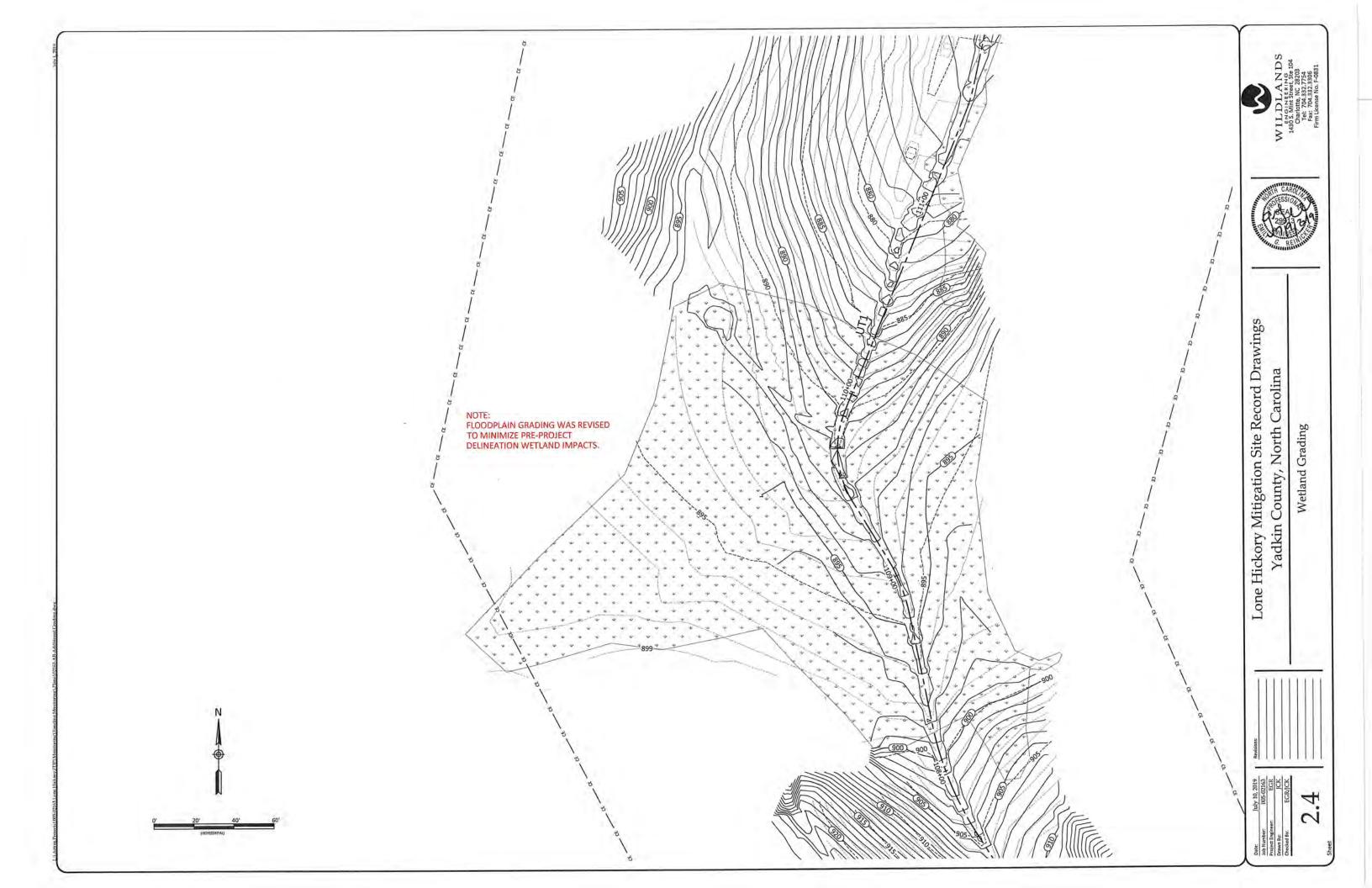


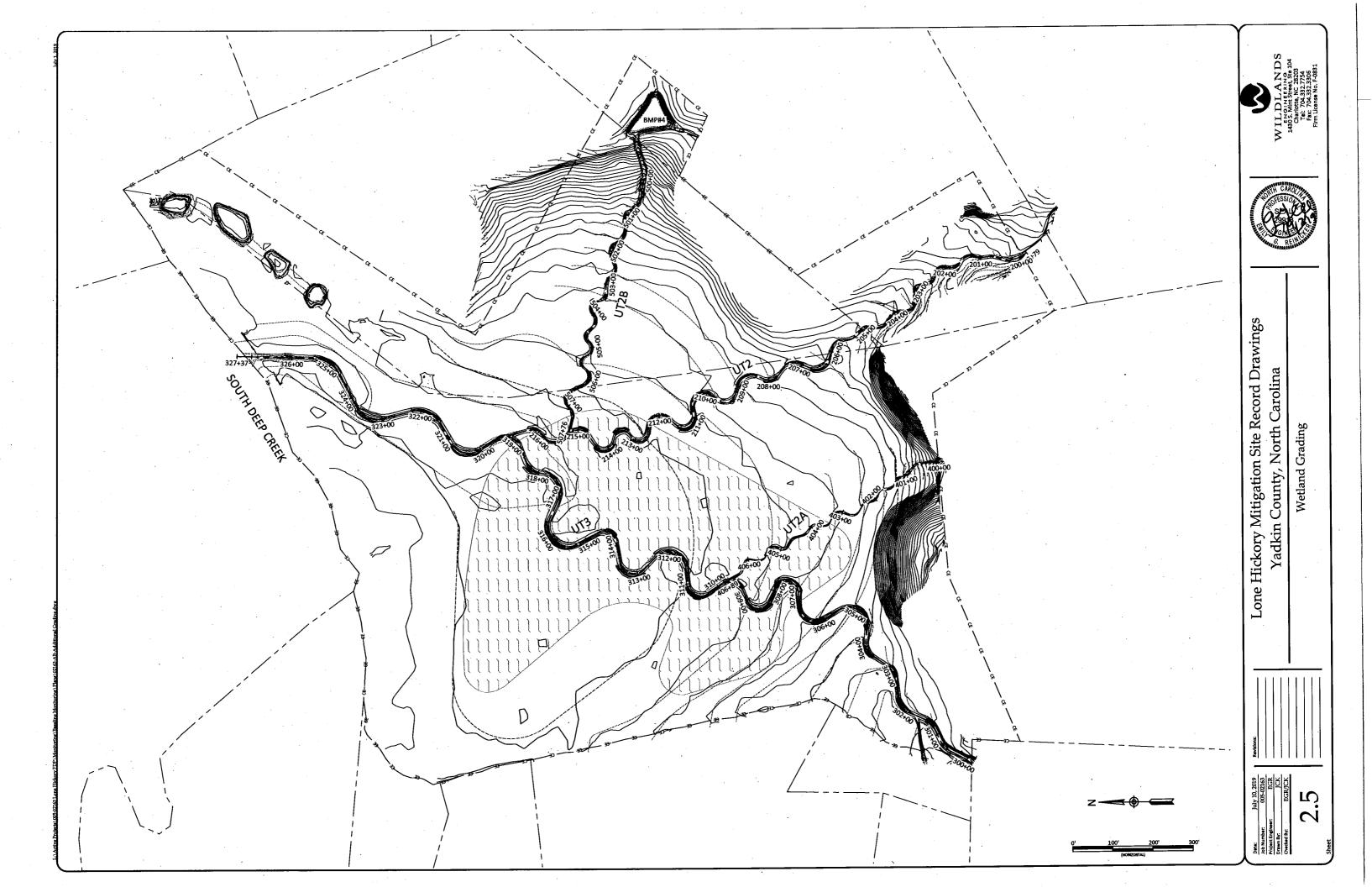


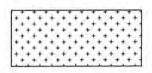




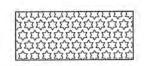






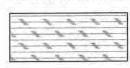


		Buffer	Planting Zor	ne		
	Open/	Graded Bar	e Roots (605	stems / acre)		
Species.	Common Name	Max Spacing	Indiv. Spacing	Min. Caliper Size	Stratum	% of Stems
Quercus phellos	Willow Oak	12 ft.	6-12 ft.	0.25"-1,0"	Canopy	10%
Platanus accidentalis	Sycamore	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	20%
Betula nigra	River Birch	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	15%
Liriodendron tulipifera	Tulip Poplar	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	20%
Fraxinus pennsylvanica	Green Ash	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	5%
						70%
		Al	ternatives			
Alnus serrulata	Tag Alder	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	10%
Quercus pagoda	Cherrybark Oak	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	10% 15 %
Quercus michauxii	Swamp Chestnut Oak	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	10% 5 %
Quercus lyrata	Overcup Oak	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	10%
					Total	100%
	Perma	nent Riparia	an Seeding -	Open Canopy		
		Pure Live S	seed (20 lbs/	acre)		
Approved Date	Species Name		Common Name		Stratum	Density (lbs/acre)
All Year	Panicum rigidulum		Redtop Panicgrass		Herb	1.5
All Year	Agrostis hyemalis		Winter Bentgrass		Herb	4.0
All Year	Chasmanthium	latifolium	atifolium River Oats		Herb	2.0
All Year	Rudbeckia hirta		Blackeyed Susan		Herb	1.0
All Year	Coreopsis lanceolata		Lanceleaf Coreopsis		Herb	1.0
All Year	Carex vulpinoidea		Fox Sedge		Herb	3.0
All Year	Panicum clandestinum		Deertongue		Herb	3.5
All Year	Elymus virginicus		Virginia Wild Rye		Herb	2.0
All Year	Asclepias syrica		Common Milkweed		Herb	0.2
All Year	Baptisia australis		Blue False Indigo		Herb	0.2
All Year	Gaillardia p	ulchella	Annual Gaillardia		Herb	1.0
All Year	Echinacea p	urpurea	Pale Purple Coneflower		Herb	0.6



NOTE: SUPPLEMENTAL PLANTING MODIFIED BASED ON FIELD CONDITIONS.

Shaded Areas Bare Roots - Buffer Planting			
Species	Common name		
Platanus occidentalis	Sycamore		
Fraxinus pennsylvanicum	Green Ash		
Betula nigra	River Birch		
Liriodendron tulipifero	Tulip Poplar		
Quercus michauxii	Swamp Chestnut Oak		
Carpinus caroliniana	Ironwood		
Diospyros virginiana	Persimmon		
Quercus pagoda	Cherrybark Oak		
Acer saccharinum	Silver Maple		
Nyssa sylvatica	Black Gum		
Quercus phellos	Willow Oak		
Callicarpa americana	Beautyberry		
Cornus alternifolia	Pagoda Dogwood		
Euonymus americanus	American Strawberry Bush-		
Calycanthus floridus	Sweetshrub		
-Magnolio virginiana	Sweetbay Magnolia		
Hamamelis virginiana	Witch-Hazel		
- Clethra alnifolia	Sweet Pepperbush		

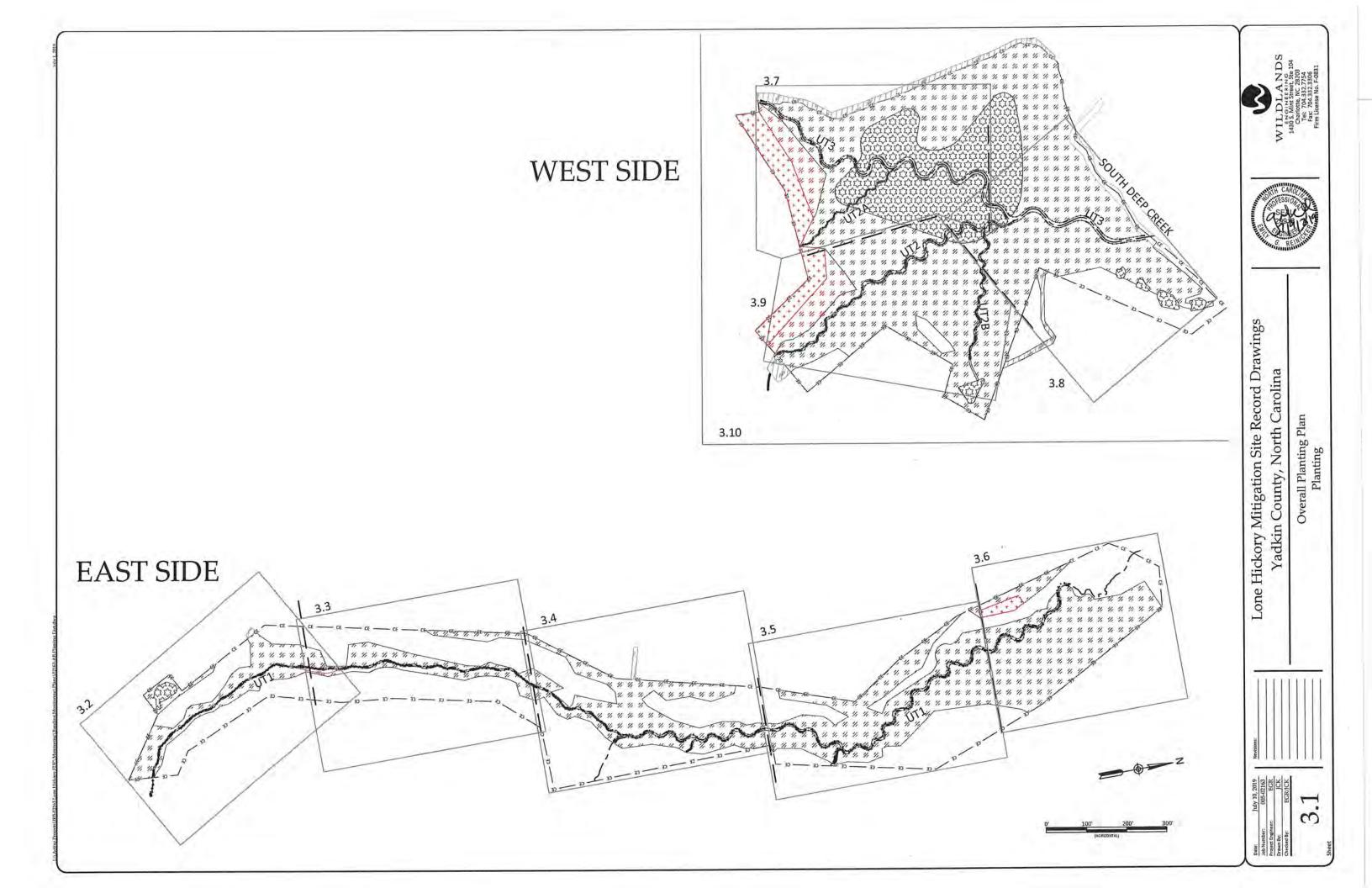

		Streamba	nk Planting Z	one		
		Li	ve Stakes			
Species	Common Name	Max Spacing	Indiv. Spacing	Min. Size	Stratum	% of Stems
Salix nigra	Black Willow	8 ft.	2-8 ft.	0.5"-1.5" cal.	Shrub	10%
Cornus amomum	Silky Dogwood	8 ft.	2-8 ft.	0.5"-1.5" cal.	Shrub	35%
Salix sericea	Silky Willow	8 ft.	2-8 ft.	0.5"-1,5" cal.	Shrub	40%
Physocarpos opulifolius	Ninebark	8 ft.	2-8 ft.	0.5"-1.5" cal.	Shrub	15%
-1		11				100%
		Herb	aceous Plugs			
Juncus effusus	Common Rush	5 ft.	3-5 ft.	1.0"- 2.0" plug	Herb	45%-509
Carex alata	Broadwing Sedge	5 ft.	3-5 ft.	1.0"- 2.0" plug	Herb	45%-50%
Panicum virgatum	Switchgrass	5ft.	3-5 ft.	1.0"- 2.0" plug	Herb	10%
						100%

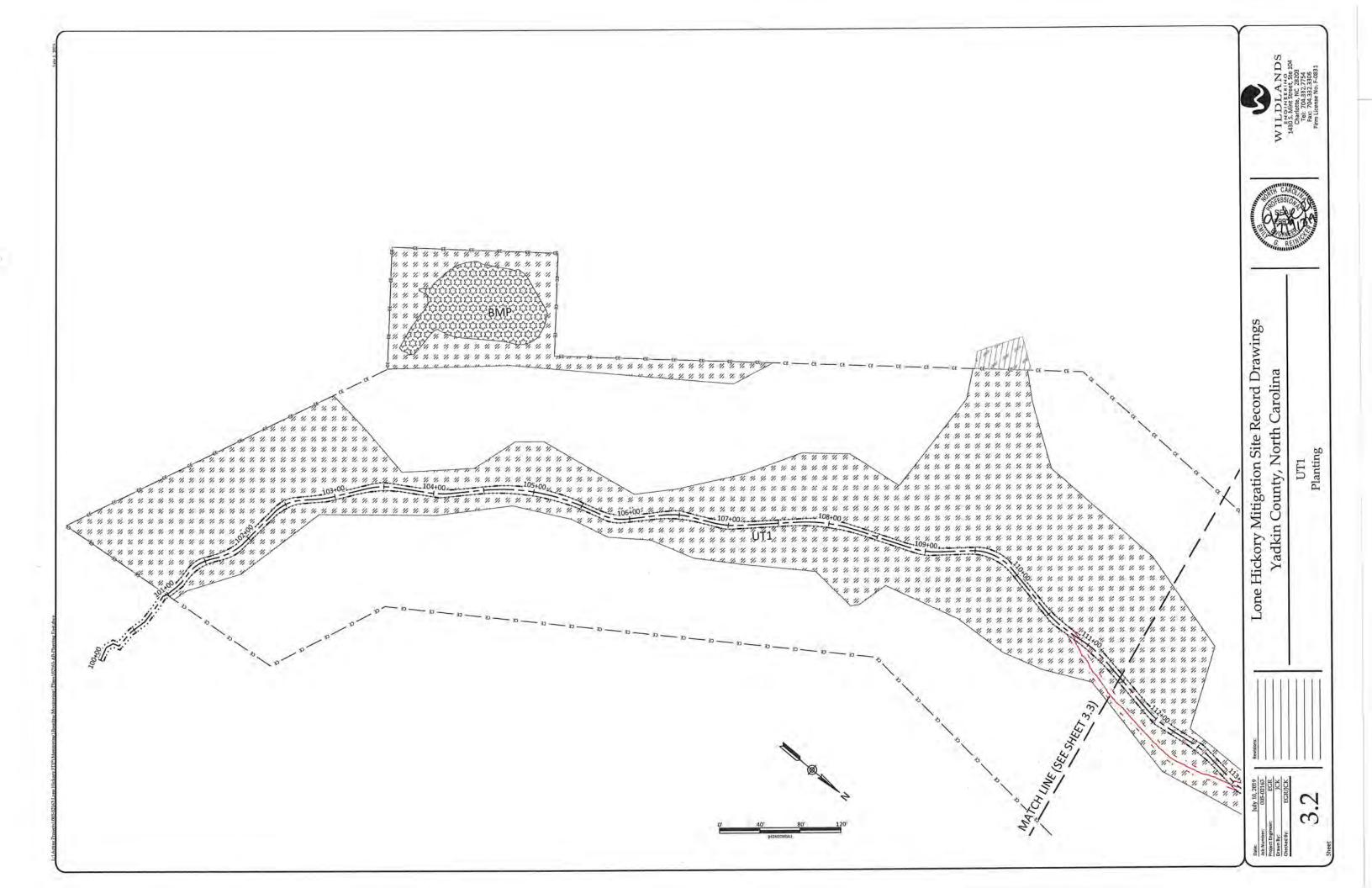
NOTE: HERBACEOUS PLUGS TO BE PLANTED DURING 'APPROPRIATE PLANTING WINDOW

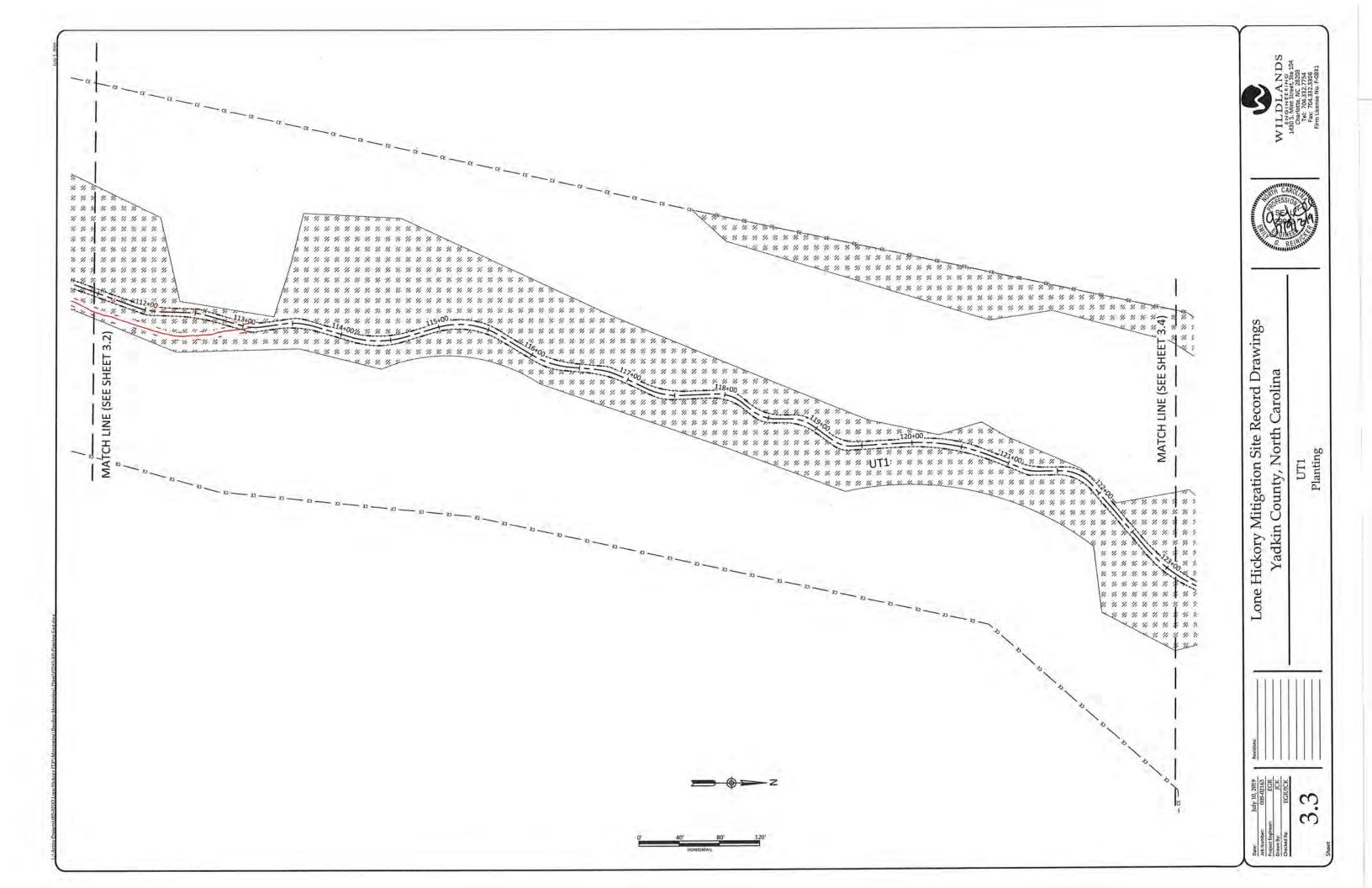
Scientific Name	Common Name	% of stems
Platanus occidentalis	Sycamore	
Quercus phellos	Willow Oak	15%
Betula nigra	River Birch	15%
Fraxinus pennsylvanica	Green Ash	15%
-Quercus michauxii Quercus pagoda	Swamp Chestnut Oak Cherrybark Oak	15%
Acer rubrum	Red Maple	5%
Diospyros virginiana	Persimmon	10%
Populus deltoides	Eastern Cottonwood	10%
	Total	100%

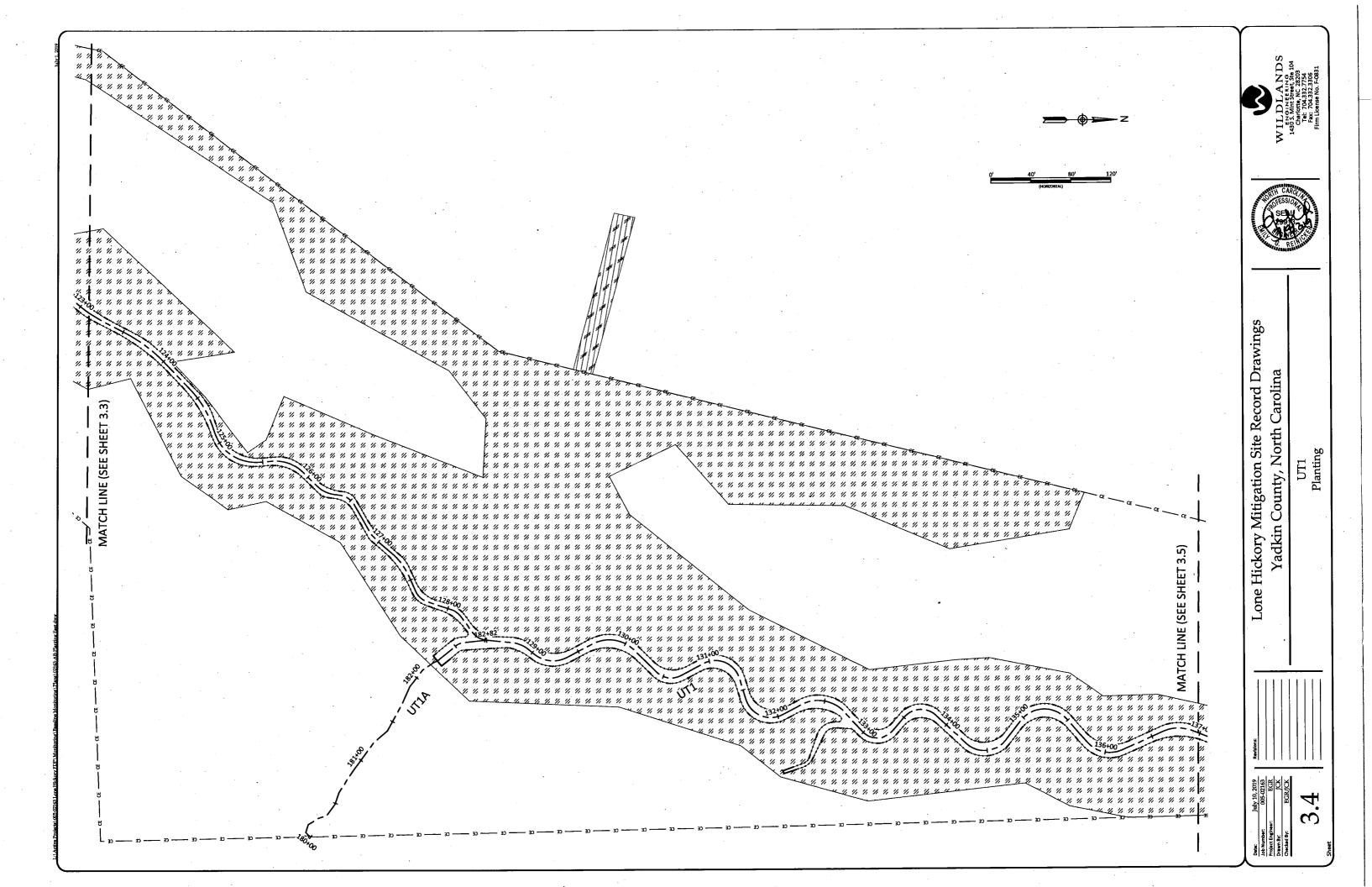
Pasture areas outside easement.

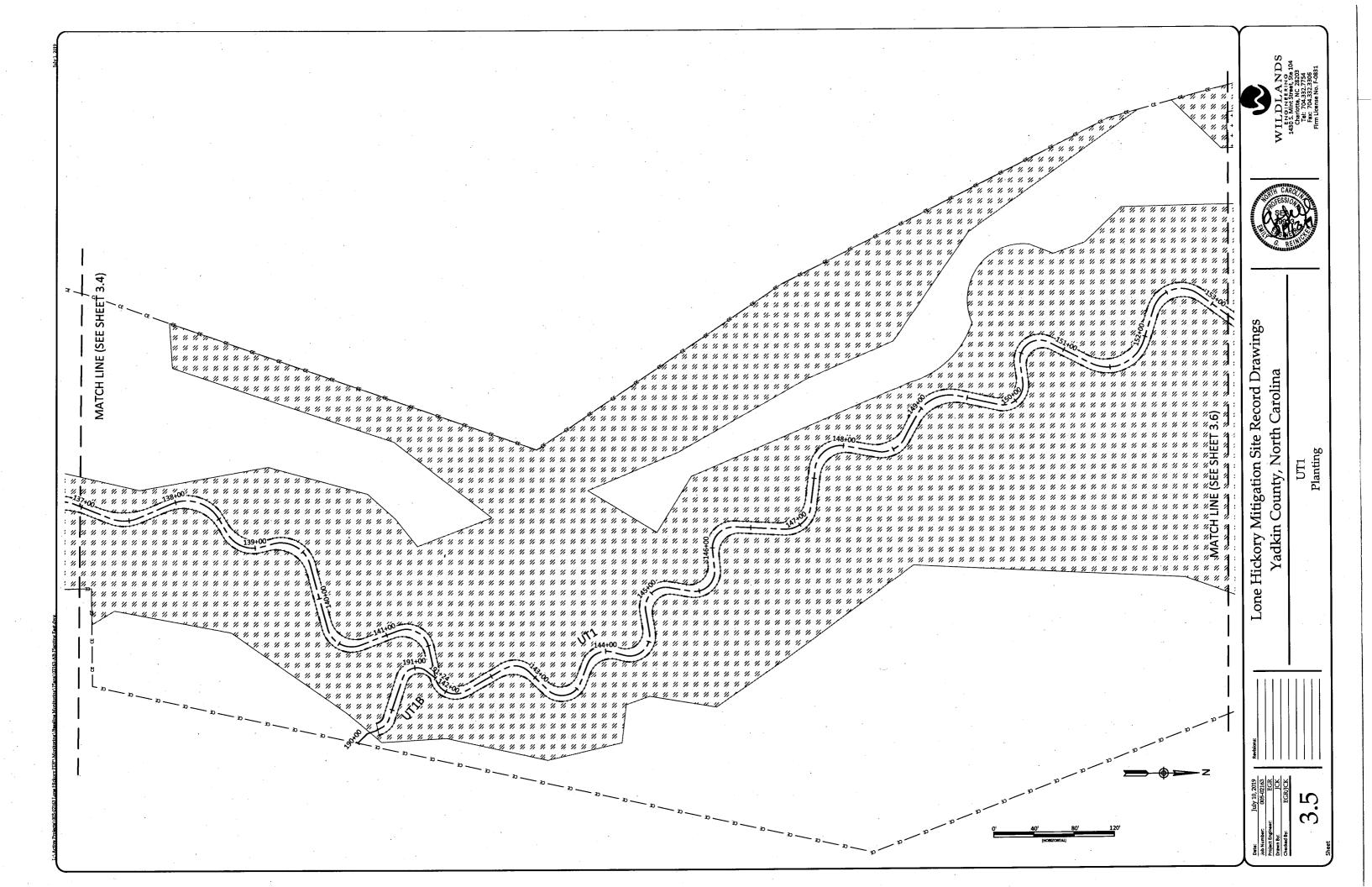
Pasture Seeding						
Approved Date	Species Name	Stratum	Common Name	Density (lbs/acre)		
All Year	Festuca arundinacea	Herb	Tall Fescue	80		
All Year	Trifolium repens	Herb	White Clover	8		






Lone Hickory Mitigation Site Record Drawings Yadkin County, North Carolina


Planting List Planting


3

